
Agentj
Java Agent Framework for NS2

Ian J. Taylor

September 15, 2004

2

Contents

I Introduction, Overview and Installation 1

1 Introduction 5

1.1 Motivation for Agentj . 5

1.1.1 Investigation into P2P 6

1.1.2 The sensors . 7

1.2 Overview of the AgentjArchitecture 7

1.2.1 Agentjand the JNI PAI Interface 9

1.3 The GAP Interface and P2PS 10

1.3.1 The GAT . 11

1.3.2 The GAP Interface . 11

1.3.3 P2PS . 12

1.4 Filling in the Gaps . 13

1.5 Conclusion . 14

2 Installing the Agentj Toolkit 15

2.1 Downloading the Pieces . 15

2.2 Installing the Protolib NS2 Binding 16

2.3 Installing Agentj . 17

2.4 Environment Variables . 18

2.5 Installation into NS2 . 19

2.5.1 Building NS2 . 22

2.5.2 What’s included in the AgentjRelease? 34

2.6 Configuration . 35

2.7 AgentjLogging . 35

2.7.1 AutoLog Overview . 35

2.7.2 AutoLog Discovery . 36

2.7.3 Example XML Configuration 37

2.8 Conclusion . 37

i

ii CONTENTS

II Agentj Design and Implementation 39

3 Protolib 43
3.1 An overview of Protolib . 43
3.2 Protolib Structure . 44
3.3 Conclusion . 47

4 The PAI Interface 49
4.1 Overview of PAI . 49
4.2 Programming PAI . 49
4.3 Using PAI within NS2: The C++ Side 49
4.4 Ns2 Agents . 51
4.5 PAI Agents and Protolib . 54
4.6 Conclusion . 54

5 Agentj : Java Agents in NS2 55
5.1 Agentj Software Overview . 55

5.1.1 Creating Agentj Nodes 56
5.1.2 Inter-Agentj Communication 57

5.2 Agentj Implementation . 59
5.2.1 Organization of Agentj Classes 60
5.2.2 Key Agentj Classes 61
5.2.3 The Java PAI interface 64

5.3 Conclusion . 66

III Using Agentj 69

6 Using Agentj 73
6.1 Invoking Java Agents from NS2 Agents 73
6.2 Creating and Attaching a Java Agent 76

6.2.1 The TCL Side . 76
6.2.2 The Java Side . 78

6.3 Changing the Command Delimiter 79
6.3.1 The TCL Side . 80
6.3.2 The Java Side . 81

6.4 Conclusion . 82

7 Advanced Agentj 85
7.1 Agentjand PAI . 85

7.1.1 Using the Java PAI Interface in Ns2 Java Objects . . . 85
7.2 Example 1: Sending Data From One Node to Another 86

CONTENTS iii

7.2.1 The TCL Side . 86
7.2.2 The Java Side . 87

7.3 Example 2: Using the Trigger Mechansim 91
7.3.1 The TCL Side . 91

7.4 Example 3: Sending Data Using Multicast 93
7.4.1 The TCL Side . 93
7.4.2 The Java Side . 95

7.5 Conclusion . 98

iv CONTENTS

Part I

Introduction, Overview and
Installation

1

3

In this part, we given an introduction and overview of Agentj including
the underlying technologuies that Agentj encapsulates. We then provide a
detail account of how to install Agentj into the NS2 simulation environment
for the simulation of Java distributed applications.

4

Chapter 1

Introduction

This chapter gives a background into the motivation behind the development
of the Agentj framework. There is an accompanying manual [1], which
describes a use of the Agentj framework for simulating P2P networks within
the NS2 [12] simulation environment. Agentj provides uses with the ability
of simulating both real-world Java applications within NS2. It supports a
subset of the common transport protocols used by applications e.g. UDP,
TCP, Multicast etc and enables these protocols to be used within NS2 as if
the application was running within the real Internet. The focus for Agentj is
to simplify the process of simulating applications within Ns2 and therefore
native familiar Java interfaces are provided so that the application only has
to undergo minimal changes in order to be simulated within NS2.

Agentj also supports C++ applications but the applications would have
to program to the interfaces we provide via the PAI or Protolib toolkits.
Unlike the Agentj Java implementation the C++ are not the same as the
native socket implementations and therefore recoding would be required. In
Java, an application simply needs to change package name to use Agentj,
and the interfaces to UDP/TCP thereafter are identical. Therefore, often a
find/replace on ”java.net” to ”pai.net” suffices and a Java application can
be simulated using Agentj within NS2. We prove by providing the P2PS
implementation, which works exactly in this way. P2PS remains the same
but we’ve plugged in the Agentj communications layer.

1.1 Motivation for Agentj

The main developer of Agentj 1 is working with the Scalable, Robust Self-
Organizing Sensor (SRSS) systems group in NRL, which is investigating and

1Ian Taylor, email: ian.j.taylor@cs.cardiff.ac.uk

5

6 CHAPTER 1. INTRODUCTION

modelling, using network simulation tools, lightweight network application
discovery mechanisms suitable for application in mobile sensor systems. The
mobile sensors are envisioned to leverage self-organizing computer commu-
nication networks based on Mobile Ad-hoc Networking (MANET) routing
protocols which operate using wireless communication links and have no
centralized administration or control.

Each node in a MANET network participates in the discovery of a route
and therefore low-level routing protocols are paramount to the overall be-
haviour. However, it is anticipated that middleware network services beyond
routing will be required to facilitate autonomous self-organization of sensors
and their various related data collection, processing, and reporting functions.

The complexity of middleware approaches being considered and examined
range from utilization of simple, organic network services which might be pro-
vided by the network layer (network name/address resolution, IP multicast,
ANYCAST) to potentially heavy-weight, highly stateful, complex agent-
based architectures. The focus of this task will be lightweight (minimally
complex) middleware discovery mechanisms and services which can facilitate
publish and subscribe relationships among a set of sensor application peers
participating in an SRSS network. The context of highly dynamic, possibly
mobile, networking will place special challenges on such protocols ability to
perform peer neighbor and service discovery and to maintain that informa-
tion in the face of node outages and/or relocation within the network.

1.1.1 Investigation into P2P

To satisfy these goals, the SRSS project has been looking into the use of
lightweight peer-to-peer (P2P) solutions for dynamically discovering and con-
necting the mobile sensor nodes. P2P middleware attempts to create a vir-
tual overlay [2] over the existing Internet to enable collaboration and sharing
of resources. Further, recent P2P approaches have been designed to con-
nect individual users using highly transient devices and computers living at
the edges of the Internet (i.e., behind NAT, firewalls etc) [3]. Therefore,
Agentj provides the framework and other systems e.g. P2PS, provide the
P2PS techniques that run within NS2 using Agentj. For a discussion of why
P2PS was chosen instead of other middleware approaches (e.g. Jxta), see [1].

The P2P approach is interesting to the SRSS group because mobile sen-
sors within wireless networks exhibit similar types of behaviour as Internet
peers, but are hosted within an even more hostile environment; that is, nodes
are disappearing/reappearing frequently, data rates are continuously chang-
ing as the sensors move away from the wireless hubs and other factors, such as
battery strength, which can affect the type of role the sensor can play within

1.2. OVERVIEW OF THE AGENTJARCHITECTURE 7

Main Processor
Sensor Apps/Agents/etc

Operating System
Networking Stack

Wireless
interface(s)

Sensor
Device(s)

Figure 1.1: The components of a wireless sensor within an SRSS network.

the network. It could be argued that a mobile sensor application working in
such an environment provides an excellent stress test for the P2PS protocols
employed as it is far more dynamic than a conventional Internet application.

1.1.2 The sensors

The actual sensors are relatively simple devices that consist of a CPU, a
data collection mechanism e.g. ADC convertor for audio, images etc and
a wireless network card for communication across the MANET network to
other participating nodes in the community.

1.2 Overview of the AgentjArchitecture

Agentj implements a Java framework for plugging in Java applications (e.g.
SRSS mobile node behaviour) and middleware, such as the GAP and its
bindings e.g. P2PS. The GAP interface and P2PS middleware are described
briefly here in Sections 1.3.2 and 1.3.3 and in detail in the accompanying
P2PSx manual [1].

An overview of the Agentj software architecture is given in Figure 1.2.
At the lower levels we have two distinct environmets that Agentj application

8 CHAPTER 1. INTRODUCTION

Network
Wireless (or wired..)

NS-2
MANET simulations

Protolib

Protolib Application Interface (PAI)

Agentj Interface

P2P Middleware
(discovery, communication mechanisms)

Application – dynamic self
organizing sensor nets

Figure 1.2: An overview of the Agentj software stack

can work within: the Internet (or networked environment) or within the NS2
simulatiojn environment. Application typically can switch between the nodes
and every effort has been made to make this transition between a simulated
environment and a real-world deployment as seamless as possible.

NS-2 [12] is a discrete event simulator that supports the link layer up-
wards on the OSI stack i.e. the network, transport, session, presentation and
application layer, respectively. It can support both wired and wireless sim-
ulations and works on most platforms and therefore satisfies the main focus
of the project, that is, to test out various P2P discovery and communication
mechanisms within various network extremities.

The toolkit that provides the glue for the communication protocols and
timing interfaces that can enables Agentj to switch between these modes is
called Protolib [4]. Protolib implements a switchable communications layer
for several communication protocols (e.g. TCP, UDP, Multicast etc) in that
the same programming interface can be used to communicate within either
environment. To bind to NS2 or a networked environment, typically the
application just needs to be recompiled. Protolib is described in detail in
Chapter 3.

The PAI interface (described in Chapt. 4) extends the functional-
ity/flexibility of Protolib toolkit by allowing multiple listeners to be attached
to sockets or timers. It also provides convenient interfaces for creating and

1.2. OVERVIEW OF THE AGENTJARCHITECTURE 9

deleting socket or timing instances and implements an engine for providing
the necessary housekeeping. In essence, PAI provides a hosting environment
for Protolib to be deployed in Java applications because it fills in the gap
between what Java applications expect and what the core Protolib toolkit
provides.

Finally, Agentj provides a familiar Java interface, based around the
java.net package, to the underlying functionality provided by the PAI and
Protolib interfaces. Specifically Agentj implements a Java Native Interface
(JNI) binding for the PAI C++ interface and then re-implements this func-
tionality within a set of Java classes that allow Java programmers to use
Protolib sockets as if they were native Java ones. The next section describes
this interaction in more detail.

Network
Wireless (or wired..)

NS-2
MANET simulations

Protolib

Protolib Application Interface (PAI)

GAP + P2PS
Application

Java

C++

Java PAI Interface

Agentj Interface

Java Native Interface (JNI)

Figure 1.3: The Agentj architecture showing the JNI interface, which pro-
vides the mapping between the NS2 C++ PAI classes and the Java imple-
mentation of the Agentj interface and applications.

1.2.1 Agentj and the JNI PAI Interface

Since the middleware is written in Java, a JNI bridge is needed in order to
map between the C++ NS2 objects and the associated Java objects. This
bridging mechanism is required at both the input to the Java application and

10 CHAPTER 1. INTRODUCTION

at its lower communication layers; that is, first the C++ NS2 agents need to
access and attach Java agents to the NS2 agents, then these Java agents need
to be able to access the PAI C++ interface in order to pass data between
NS2 nodes.

In the first case, the C++ agents create a Java Virtual Machine (JVM)
in order to create an environment for running and accessing Java objects.
In the second case, we provide a mapping to the PAI and Protolib C++
libraries via the Java PAI interface using JNI. The resulting programming
arhictecture is shown in Figure 1.3.

In this figure, we show the view from an application developer, which
illustrates the interface that s/he interacts with. The developer of a Java
NS2 applications interacts with a set of high-level Java classes, whilst this
functionality is converted to a set of Java PAI function calls, which in turn,
is converted via a JNI interface to the C++ PAI interface and down to the
Protolib interface. This interaction is described in more detail in Chapter ??.
The next section briefly describes the GAP interface and P2PS Middleware
and then we summarize the complete structure in the final section of this
chapter.

1.3 The GAP Interface and P2PS

Due to the flexibility needed for comparing different discovery mechanisms
the SRSS project have adopted the use of a high-level interface, called the
GAP. The GAP is an application-layer interface that has been been developed
at Cardiff University within the Gridlab [16] and GridOneD projects [17].
The GAP interface is provides access to a core set of advertisement, discovery
and communication services, which were designed by analysing a number
of P2P applications and extracting the core functionality most applications
require.

The GAP was motivated by the Grid Application Toolkit (GAT) interface
[8], which is committed to conforming to emerging application-level standards
that are currently being specified through the SAGA research group at the
Global Grid Forum [5]. The GAP provides the asynchronous messaging capa-
bilities for the GAT engine, which is currently undergoing widespread adop-
tion by many application groups worldwide and featured heavily in GRID-
START efforts [9].

1.3. THE GAP INTERFACE AND P2PS 11

1.3.1 The GAT

The GAT interface provides a generalised collection of calls to shield Grid ap-
plications from implementation details of the underlying Grid middleware,
and is being developed in the European GridLab project [16]. The GAT
utilises adaptors that provide the specific bindings from the GAT interface
to the underlying mechanisms that implement this functionality. For ex-
ample, a move file command may have many GAT adaptors that implement
this functionality depending upon the particular execution environment used,
such as GridFTP, JXTA pipes or a local cp command.

GAT may be referred to as upperware, which distinguishes it from mid-
dleware (which provides the actual implementation of the underlying func-
tionality). Until recently, application developers typically interact with the
middleware directly. However, it is becoming increasingly apparent that this
transition from one type of middleware to another is not a trivial one. Using
interfaces like GAT, migrating from one middleware environment to another
is easier, and typically achieved by setting an environment variable. This is
illustrated in the next section where we have implemented an adaptor to bind
to P2P middleware for operating in P2P environments as well as the Grid
environments supported directly by GridLab. This means that exactly the
same Triana implementation can be used within both environments trans-
parently.

1.3.2 The GAP Interface

The Grid Application Prototype Interface (GAP Interface) is a generic appli-
cation interface providing a subset of the GAT functionality. It is middleware
independent, with bindings provided for different Grid middleware such as
JXTA and Web Services, as illustrated in Figure 1.4.

Part of the motivation behind the GAP Interface is as a stopgap to en-
able us to develop distribution mechanisms within Triana while the GridLab
GAT is being developed. When the GridLab GAT becomes available the
GAT-API will replace the GAP Interface within Triana and should enable
Triana to make use of the advanced security, logging and other GridLab ser-
vices. However, the GAP Interface will live on, both as a simple interface
for prototyping Grid and P2P applications, and as an adaptor within the
GridLab GAT architecture providing various discovery and communication
capabilities. Currently there are three GAP bindings implemented:

JXTA - The original GAP Interface binding was to JXTA [15]. JXTA is
a set of protocols for Peer-to-Peer discovery and communication orig-
inally developed by Sun Microsystems. Although we achieved some

12 CHAPTER 1. INTRODUCTION

Application
(e.g. Triana)

GAP Interface

JXTA P2PS Web Services

UDDI
SOAP

JXTA
Discovery JXTA

Pipes

Figure 1.4: The GAP Interface provides a middleware independent interface
for developing Grid applications

initial success with JXTA, we have since had problems with the speed
and reliability of the JXTA binding.

P2PS - a lightweight Peer-to-Peer middleware. See Section 1.3.3 and for a
more detailed description, see the P2PSx manual [1].

Web Services - The most recent GAP binding allows applications to dis-
cover and interact with Web Services – using the UDDI registry [24]
and the Web Service Invocation Framework (WSIF) [25].

1.3.3 P2PS

P2PS (Peer-to-Peer Simplified) is a lightweight peer-to-peer infrastructure.
As the name suggests, P2PS aims to provide a simple collection of middleware
that a develop can use to write peer-to-peer style applications, hiding the
complexity of other similar architectures such as JXTA [15] and JINI [22].

Briefly, the P2PS infrastructure is based on XML based discovery and
communication, which makes it independent of any implementation language
and computing hardware. P2PS implementations could exist in any language
and there is a specification which can be used to implement such, although at
this time we have only built a prototype Java implementation. Furthermore,
communication within P2PS is not tied to any single transport protocol, such
as TCP/IP, and can be extended to include new protocols, such as Bluetooth

1.4. FILLING IN THE GAPS 13

or extend existing ones by writing new endpoint resolvers e.g. we use this
approach to write NS2 endpoint resolvers for TCP and UDP.

P2PS has been design to operate in highly dynamic, transient environ-
ments and provides an overlay for discovering anything that a peer wants
to advertise e.g. specific services, rendezvous (caching) peers, endpoint pro-
tocols etc. P2PS dynamically discovers the capabilities of other peers at
run-time and can negotiate and match how it communicates and how it or-
ganises its peers. This makes P2PS highly suitable for testing out different
SRSS discovery mechanisms for two key reasons. First, we can test the dis-
covery mechanisms built into P2PS (Multicast and Unicast) and secondly,
we can easily extend this to include other protocols by writing new endpoint
resolvers. Thus, we have a core extensible framework for testing and explor-
ing a number of mechanisms both within a simulated environment or within
a real-world application.

1.4 Filling in the Gaps

Protolib

P2PS Comms

JXTA P2P P2PS

GAP Interface

SRSS Application

Network

Network NS-2

Web Services

PAI
JNIJNI

Java Comms
Ns2 Endpoint

Resolvers

NS2
UDP/TCP

C++
UDP/TCP

Any other..

Figure 1.5: An overview of how the SRSS application will use the complete
Agentj architecture along with the GAP and P2PSx binding.

The resulting architecture is shown in Figure 1.5. The application (i.e.

14 CHAPTER 1. INTRODUCTION

mobile sensors) can ulitilise the advertising, discovery and communication
mechanisms provided through the GAP, and also hook into any of the un-
derlying GAP bindings.

Currently, we have integrated P2PS into NS2 and also we have imple-
mented a Web services deployment infrastructure using P2PS, allowing stan-
dardised Web services to be deployed and tested within this environment
also. This means that any pre-written Web service that uses WSDL for its
interface and communicates using SOAP can be hosted within NS2 using
P2PS.

As illustrated in Figure 1.5, P2PS then uses the Agentj Java socket im-
plementation, which in turn, uses the Java PAI interface. The Java PAI
interface then maps one-to-one with the C++ PAI interface, which uses Pro-
tolib to hook into the lower-level communication layers. This enables the
resulting application to be deployed in a networked or an NS-2 simulation
environment.

1.5 Conclusion

In this chapter a background and motivation into the Agentj project was
given. We discussed the project that evolved Agentj and how the system
fits in with their particular research aims and objectives. We then gave an
architectural overview of Agentj and discussed the various components and
interfaces that make up the entire system. A summary of each component
was given, laying out the groundwork for the rest of the chapters in this
manual.

Chapter 2

Installing the Agentj Toolkit

This chapter describes the installation of core packages needed in order to
get the Agentj toolkit operating. The core packages needed are:

1. Protolib: a core package for adding timers and UDP communication
within NS2 [4]

2. Agentj : this includes a customized version of the P2PS middleware
[20] and the PAI interface to Protolib, described in Chapt. 4 and the
JNI interface for attaching Java Objects to NS2 nodes.

2.1 Downloading the Pieces

NS2 version 2.26 is the recommended version for use with Agentj.
It can be downloaded as a file called ns-allinone-2.26.tar.gz from
http://www.isi.edu/nsnam/dist/.

The source code for Agentj and Protolib can be retrieved via CVS
from the Protean Forge research site hosted by the United States Naval
Research Laboratory at http://pf.itd.nrl.navy.mil/. Protolib is listed as its
own project on Protean Forge, but Agentj is listed within the SRSS project.
These project pages contain bug lists, user forums, source code of major file
releases, and publically accessible CVS repositories of the latest development
source code.

Protolib can be downloaded via CVS by running the following commands:

• cvs -d :pserver:anonymous@protolib.pf.itd.nrl.navy.mil:/cvsroot/protolib

login

• cvs -z3 -d :pserver:anonymous@protolib.pf.itd.nrl.navy.mil:/cvsroot/protolib

co .

15

16 CHAPTER 2. INSTALLING THE AGENTJ TOOLKIT

Agentj and P2PS-x can be retrieved via CVS by running the following
commands:

• cvs -d :pserver:anonymous@srss.pf.itd.nrl.navy.mil:/cvsroot/srss

login

• cvs -z3 -d :pserver:anonymous@srss.pf.itd.nrl.navy.mil:/cvsroot/srss

co agentj

• cvs -z3 -d :pserver:anonymous@srss.pf.itd.nrl.navy.mil:/cvsroot/srss

co p2ps-x

The p2ps-x module contains classes required by Agentj. After you’ve
successfully checked out these modules, the Agentj manual you are probably
currently reading will be in agentj/doc/agentj.pdf.

2.2 Installing the Protolib NS2 Binding

With the Protolib release there is a supplied Makefile for NS version 2.26
and a README.TXT file in the ns directory. The read me file describes the
steps involved in installing protolob into NS2. They are as follows:

To use PROTOLIB with ns, you will need to at least
modify the ns "Makefile.in" to build the PROTOLIB
code into ns. To do this, use the following steps:

1) Make a link to the PROTOLIB source directory in the
ns source directory. (I use "protolib" for the link
name in the steps below).

2) Provide paths to the PROTOLIB include files by setting

PROTOLIB_INCLUDES = -Iprotolib/common -Iprotolib/ns

and adding $(PROTOLIB_INCLUDES) to the "INCLUDES" macro
already defined in the ns "Makefile.in"

3) Define compile-time CFLAGS needed for the PROTOLIB code
by setting

PROTOLIB_FLAGS = -DUNIX -DNS2 -DPROTO_DEBUG -DHAVE_ASSERT

and adding $(PROTOLIB_FLAGS) to the "CFLAGS" macro already
defined in the ns "Makefile.in"

2.3. INSTALLING AGENTJ 17

4) Add the list of PROTOLIB object files to get compiled and linked
during the ns build. For example, set

OBJ_PROTOLIB_CPP = \
protolib/ns/nsProtoAgent.o protolib/common/protoSim.o\
protolib/common/networkAddress.o \
protolib/common/protocolTimer.o \
protolib/common/debug.o

and then add $(OBJ_PROTOLIB_CPP) to the list in the "OBJ"
macro already defined in the ns "Makefile.in"

Note: "nsProtoAgent.cpp" contains a starter ns agent which uses the
PROTOLIB ProtocolTimer and UdpSocket classes.

5) Add the the rule for .cpp files to ns-2 "Makefile.in":

.cpp.o:
@rm -f $@
$(CC) -c $(CFLAGS) $(INCLUDES) -o $@ $*.cpp

and add to the ns-2 Makefile.in "SRC" macro definition:

$(OBJ_CPP:.o=.cpp)

6) Run "./configure" in the ns source directory to create a new
Makefile and then type "make ns" to rebuild ns.

Brian Adamson
<mailto://adamson@itd.nrl.navy.mil>
18 December 2001

The first thing to take note is that Protolib is basically a plug-in for
NS 2 to allowing a trigger mechanism, based on timers and a UDP socket
implementation for passing data between NS2 nodes. Therefore, to install
this plug-in, you must recompile NS2. It is therefore advisable to build NS2
from scratch then add the protolib plug-in.

2.3 Installing Agentj

The Agentj toolkit installation follows a similar installation path to Pro-
tolib but instead of using a softlink, it uses environment variables within
the Makefile.in file to point to the installation directory for the source code

18 CHAPTER 2. INSTALLING THE AGENTJ TOOLKIT

for Agentj. The installation is provided below and follows a similar style
to the Protolib procedure for simplicity. This file can be found in the
src/build/ns2PAIConfig directory within the Agentj source tree.

To install Agentj you need to first install Protolib and then modify the
ns ”Makefile.in” to build the Agentj code into ns (there is a Makefile.in file for
the ns2.26 release given in the Agentj build directory). Before, we describe
how to modify the NS2 makefile, let’s take a brief look at the environment
variables I define that are used by Agentjand NS-2.

2.4 Environment Variables

In my .tcshrc file, I define the following environment variables, which allow
me to specify the installation directories and specify class paths, library paths
and NS-2 specifics in on file. The environment variables here are defined in
my .tcshrc file on my MAC but could easily be converted to .bat files (for
windows) or csh or bash shells on Unix systems.

setenv AGENTJ /Users/scmijt/Apps/nrl/agentj

setenv AGENTJDEBUG ON

setenv AGENTJXMLCONFIG $AGENTJ/config/AgentJConfig.xml

setenv PATH $NS/bin:/unix:$NS/tcl8.3.2/unix:$NS/tk8.3.2/unix:$PATH

setenv LD_LIBRARY_PATH $AGENTJ/lib/:$NS/otcl-1.0a8:$NS/lib

setenv TCL_LIBRARY $NS/tcl8.3.2/library

setenv CLASSPATH $AGENTJ/classes:$AGENTJ/lib/autolog.jar:
$AGENTJ/lib/log4j-1.2.8.jar

For a Linux system, the CLASSPATH should also include paths to
p2ps-x/classes/, p2ps-x/lib/, and the jar files in p2ps-x/lib/. As an
example, I define the CLASSPATH in my bash environment on a Linux box
as follows:

export CLASSPATH=/home/iandow/p2ps/development/p2ps-x/classes:\
/home/iandow/p2ps/development/agentj/classes:\
/home/iandow/p2ps/development/agentj//lib/autolog.jar:\
/home/iandow/p2ps/development/agentj//lib/log4j-1.2.8.jar:\
/home/iandow/p2ps/development/p2ps-x/lib/gap.jar:\
/home/iandow/p2ps/development/p2ps-x/lib/jdom.jar:\
/home/iandow/p2ps/development/p2ps-x/lib/p2ps.jar

2.5. INSTALLATION INTO NS2 19

Descriptions of the purpose of of these definitions are given as follows:

• AGENTJ: is used to specify the installation directory of the agentj
package. This is used by the Makefile.in NS-2 makefile and also used
within the other environment variables defined here.

• AGENTJDEBUG: is used to specify whether you want to turn on
logging or not. Within the C++ parts of the code, we use a simple
custom logging scheme, whereas within the Java parts of the code, log4j
is used. To turn on logging throughout the system, set this environment
variable to ’ON’. Any other value (or no definition of this variable)
will resort to the default setting i.e. no debugging information will be
displayed. Logging is described in more detail in Section 2.7.

• AGENTJXMLCONFIG: This environment variable allows you to
specify the format for the log4j java logging using a log4j XML file. See
the log4j web site [19] for more information on how to specify these.
An example configuration is supplied in the config directory, called
AgentJConfig.xml, as indicated.

• PATH: the standard PATH variable for specifying directories that
contain executables. Here, I simply include the directories required by
NS-2 version 2.26. For more information, see [12]

• LD LIBRARY PATH: the standard environment variable for spec-
ifying where to find libraries. Here, I extend this to include the
Agentj lib directory plus some directories required by NS2, version
2.26.

• TCL LIBRARY: required for NS2 installation

• CLASSPATH: the standard environment variable used to specify the
Java classpath. Here, I extend this with the JAR files and directories
required by Agentj e.g. agentj classes directory and two JAR files
required for the Java logging: autolog.jar and log4j-1.2.8.jar.

2.5 Installation into NS2

To install Agentj, use the following steps:
1) Install Protolib
2) Set the AGENTJ environment variable to point to your installation

directory for Agentj and create pointers to the various subdirectories for
the source in the Makfile.in NS2 file, as follows:

20 CHAPTER 2. INSTALLING THE AGENTJ TOOLKIT

AGENTJ_SRC = $(AGENTJ)/src/c
AGENTJ_LIB_DIR = $(AGENTJ)/lib

AGENTJ_C_SRC = $(AGENTJ_SRC)/agentj
AGENTJ_UTILS = $(AGENTJ_SRC)/utils
PAI = $(AGENTJ_SRC)/pai
PAI_IMP = $(PAI)/imp
PAI_API = $(PAI)/api
PAI_AGENT = $(PAI_IMP)/agent
PAI_FACTORY = $(PAI_IMP)/factory
PAI_FACTORY_NET = $(PAI_FACTORY)/net
PAI_FACTORY_NS = $(PAI_FACTORY)/ns
PAI_IMP_JNI = $(PAI_IMP)/jni

2) Provide paths to the AGENTJ include files by setting

AGENTJ_INCLUDES = -I$(JAVA_HOME)/include -I$(AGENTJ_C_SRC) -I$(AGENTJ_UTILS) -I$(PAI) -I$(PAI_AGENT) -I$(PAI_API) -I$(PAI_FACTORY) -I$(PAI_FACTORY_NET) -I$(PAI_FACTORY_NS) -I$(PAI_IMP_JNI) # -I$(LOG4CPLUS_INCLUDE_DIR)

and adding $(AGENTJ_INCLUDES) to the "INCLUDES" macro
already defined in the ns "Makefile.in"

On Linux platforms, include the path to jni_md.h in the list of AGENTJ
include files. So, AGENTJ_INCLUDES might look like something like this:

AGENTJ_INCLUDES = -I$(JAVA_HOME)/include -I$(JAVA_HOME)/include/linux -I$(AGENTJ_C_SRC) -I$(AGENTJ_UTILS) -I$(PAI) -I$(PAI_AGENT) -I$(PAI_API) -I$(PAI_FACTORY) -I$(PAI_FACTORY_NET) -I$(PAI_FACTORY_NS) -I$(PAI_IMP_JNI)

3) Add the list of AGENTJ object files to get compiled and linked
during the ns build. For example, set

OBJ_AGENTJ_CPP = $(AGENTJ_UTILS)/LinkedList.o $(PAI_FACTORY)/PAIDispatcher.o \
$(PAI_FACTORY)/PAIEngine.o $(PAI_FACTORY)/PAIFactory.o \
$(PAI_FACTORY)/PAIMultipleListener.o $(PAI_FACTORY)/PAISocket.o \
$(PAI_FACTORY)/PAITimer.o $(PAI_FACTORY)/PAIEnvironment.o \
$(PAI_FACTORY)/PAIListener.o \
$(PAI_FACTORY_NS)/PAINS2UDPSocket.o \
$(PAI_FACTORY_NS)/PAINS2Timer.o \
$(PAI_API)/PAI.o \
$(PAI_AGENT)/PAIAgent.o $(PAI_AGENT)/PAISimpleAgent.o \
$(AGENTJ_C_SRC)/C2JBroker.o $(AGENTJ_C_SRC)/Agentj.o \
$(PAI_IMP_JNI)/JNIBridge.o $(PAI_IMP_JNI)/JNIImp.o

and then add $(OBJ_AGENTJ_CPP) to the list in the "OBJ"
macro already defined in the ns "Makefile.in"

Note: "Agentj.cpp" contains the NS agent for integrating Java objects.

4) Add the rule for .cpp files to ns-2 "Makefile.in":

2.5. INSTALLATION INTO NS2 21

.cpp.o:
@rm -f $@
$(CC) -c $(CFLAGS) $(INCLUDES) -o $@ $*.cpp

and add to the ns-2 Makefile.in "SRC" macro definition:

$(OBJ_CPP:.o=.cpp)

(note this has already been done - if you have installed
protolib correctly).

5) Create a shared library - define compile-time SHARED
Library flags and libraries needed for your platform to
create a shared library (this is needed for the JNI binding).
On my Mac OS 10.x, these are defined as follows:

AGENTJ_LIB = -framework JavaVM
AGENTJ_SHARED_LDFLAGS = -dynamiclib -lresolv

and adding $(AGENTJ_LIB) to the "LIB" macro already
defined in the ns "Makefile.in"

and adding a new rule to make the shared library and
put it in the correct place:

libagentj.jnilib: $(OBJ) common/tclAppInit.o
$(LINK) $(AGENTJ_SHARED_LDFLAGS) -o $@ \
common/tclAppInit.o $(OBJ) $(LIB)
mv libagentj.jnilib $(AGENTJ_LIB_DIR)

On a Linux box running a 2.6.7 kernel with version 1.5.0 of Sun’s JDK , these
flags are defined as follows:

AGENTJ_LIB = -L$(JAVA_HOME)/jre/lib/i386/server/ -ljvm
AGENTJ_SHARED_LDFLAGS = -shared

Still add $(AGENTJ_LIB) to the "LIB" macro already
defined in the ns "Makefile.in", just as for Macs.

The new rule for making the shared library for Linux
should look like this:

libagentj.so: $(OBJ) common/tclAppInit.o
$(LINK) $(AGENTJ_SHARED_LDFLAGS) -o $@ common/tclAppInit.o $(OBJ) $(LIB)
mv libagentj.so $(AGENTJ_LIB_DIR)

22 CHAPTER 2. INSTALLING THE AGENTJ TOOLKIT

6) Run "./configure" in the ns source directory to create a new
Makefile

7) Type "make ns" to rebuild ns - this creates the static library

8) Type "make libagentj.jnilib" (or "make libagentj.so" for Linux platforms) to
make the dynamic library needed for the installation of the JNI frameworks.

2.5.1 The NS-2 Makefile for Macintosh

The resulting NS2 Makefile should therefore including both the Protolib and
Agentj dependencies. A complete version of my Makefile, used to build NS
2 version 2.26 on an Apple Mac, is provided below:

Copyright (c) 1994, 1995, 1996
The Regents of the University of California. All rights reserved.
#
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that: (1) source code distributions
retain the above copyright notice and this paragraph in its entirety, (2)
distributions including binary code include the above copyright notice and
this paragraph in its entirety in the documentation or other materials
provided with the distribution, and (3) all advertising materials mentioning
features or use of this software display the following acknowledgement:
‘‘This product includes software developed by the University of California,
Lawrence Berkeley Laboratory and its contributors.’’ Neither the name of
the University nor the names of its contributors may be used to endorse
or promote products derived from this software without specific prior
written permission.
THIS SOFTWARE IS PROVIDED ‘‘AS IS’’ AND WITHOUT ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
#
@(#) $Header: 2002/10/09 15:34:11

#
Various configurable paths (remember to edit Makefile.in, not Makefile)
#

Top level hierarchy
prefix = @prefix@
Pathname of directory to install the binary
BINDEST = @prefix@/bin
Pathname of directory to install the man page
MANDEST = @prefix@/man

BLANK = # make a blank space. DO NOT add anything to this line

2.5. INSTALLATION INTO NS2 23

The following will be redefined under Windows (see WIN32 lable below)
CC = @CC@
CPP = @CXX@
LINK = $(CPP)
MKDEP = ./conf/mkdep
TCLSH = @V_TCLSH@
TCL2C = @V_TCL2CPP@
AR = ar rc $(BLANK)

RANLIB = @V_RANLIB@
INSTALL = @INSTALL@
LN = ln
TEST = test
RM = rm -f
MV = mv
PERL = @PERL@

for diffusion
#DIFF_INCLUDES = "./diffusion3/main ./diffusion3/lib ./diffusion3/nr ./diffusion3/ns"

Flags for creating a shared library - IANS Additions

CCOPT = @V_CCOPT@
STATIC = @V_STATIC@
LDFLAGS = $(STATIC)
LDOUT = -o $(BLANK)

########################### New Protolib Section #######################

OBJ_PROTOLIB_CPP = \
protolib/ns/nsProtoSimAgent.o protolib/common/protoSimAgent.o \
protolib/ns/nsProtoRouteMgr.o \
protolib/common/protoSimSocket.o protolib/common/protoAddress.o \
protolib/common/protoTimer.o protolib/common/protoExample.o \
protolib/common/protoDebug.o protolib/common/protoRouteMgr.o \
protolib/common/protoRouteTable.o protolib/common/protoTree.o

########################### Protolib Section #######################

PROTOLIB = ../../protolib

PROTOLIB_INCLUDES = -I$(PROTOLIB)/common -I$(PROTOLIB)/ns

PROTOLIB_FLAGS = -DNS2 -DSIMULATE -DUNIX -DPROTO_DEBUG -DHAVE_ASSERT -DHAVE_DIRFD

DEFINE = -DTCP_DELAY_BIND_ALL -DNO_TK @V_DEFINE@
@V_DEFINES@ @DEFS@ -DNS_DIFFUSION
-DSMAC_NO_SYNC -DSTL_NAMESPACE=@STL_NAMESPACE@

24 CHAPTER 2. INSTALLING THE AGENTJ TOOLKIT

-DUSE_SINGLE_ADDRESS_SPACE

OBJ_PROTOLIB_CPP = \
$(PROTOLIB)/ns/nsProtoAgent.o $(PROTOLIB)/common/protoSim.o \
$(PROTOLIB)/common/networkAddress.o $(PROTOLIB)/common/protocolTimer.o \
$(PROTOLIB)/common/debug.o

############################## AGENTJ Section ########################

YOU MUST SPECIFY THE AGENTJ environment variable or set this directly here

AGENTJ_SRC = $(AGENTJ)/src/c
AGENTJ_LIB_DIR = $(AGENTJ)/lib

AGENTJ_C_SRC = $(AGENTJ_SRC)/agentj
AGENTJ_UTILS = $(AGENTJ_SRC)/utils
PAI = $(AGENTJ_SRC)/pai
PAI_IMP = $(PAI)/imp
PAI_API = $(PAI)/api
PAI_AGENT = $(PAI_IMP)/agent
PAI_FACTORY = $(PAI_IMP)/factory
PAI_FACTORY_NET = $(PAI_FACTORY)/net
PAI_FACTORY_NS = $(PAI_FACTORY)/ns
PAI_IMP_JNI = $(PAI_IMP)/jni

#Note just include the ns implementation here - NOT the net directory

AGENTJ_LIB = -framework JavaVM
AGENTJ_SHARED_LDFLAGS = -dynamiclib -lresolv

AGENTJ_INCLUDES = -I$(JAVA_HOME)/include -I$(AGENTJ_C_SRC) -I$(AGENTJ_UTILS) -I$(PAI) -I$(PAI_AGENT) -I$(PAI_API) -I$(PAI_FACTORY) -I$(PAI_FACTORY_NET) -I$(PAI_FACTORY_NS) -I$(PAI_IMP_JNI) # -I$(LOG4CPLUS_INCLUDE_DIR)

OBJ_AGENTJ_CPP = $(AGENTJ_UTILS)/LinkedList.o $(PAI_FACTORY)/PAIDispatcher.o \
$(PAI_FACTORY)/PAIEngine.o $(PAI_FACTORY)/PAIFactory.o \
$(PAI_FACTORY)/PAIMultipleListener.o $(PAI_FACTORY)/PAISocket.o \
$(PAI_FACTORY)/PAITimer.o $(PAI_FACTORY)/PAIEnvironment.o \
$(PAI_FACTORY)/PAIListener.o \
$(PAI_FACTORY_NS)/PAINS2UDPSocket.o \
$(PAI_FACTORY_NS)/PAINS2Timer.o \
$(PAI_API)/PAI.o \
$(PAI_AGENT)/PAIAgent.o $(PAI_AGENT)/PAISimpleAgent.o \
$(AGENTJ_C_SRC)/C2JBroker.o $(AGENTJ_C_SRC)/Agentj.o \
$(PAI_IMP_JNI)/JNIBridge.o $(PAI_IMP_JNI)/JNIImp.o

######################## END AGENTJ Section ############################

INCLUDES = \
$(PROTOLIB_INCLUDES) \

2.5. INSTALLATION INTO NS2 25

$(AGENTJ_INCLUDES) \
-I. @V_INCLUDE_X11@ \
@V_INCLUDES@ \
-I./tcp -I./common -I./link -I./queue \
-I./adc -I./apps -I./mac -I./mobile -I./trace \
-I./routing -I./tools -I./classifier -I./mcast \
-I./diffusion3/lib/main -I./diffusion3/lib \
-I./diffusion3/lib/nr -I./diffusion3/ns \
-I./diffusion3/diffusion -I./asim/ -I./qs

LIB = \
@V_LIBS@ \
@V_LIB_X11@ \
@V_LIB@ \
$(AGENTJ_LIB) \
-lm @LIBS@
-L@libdir@ \

CFLAGS = $(CCOPT) $(DEFINE) $(PROTOLIB_FLAGS) $(AGENTJ_FLAGS)

Explicitly define compilation rules since SunOS 4’s make doesn’t like gcc.
Also, gcc does not remove the .o before forking ’as’, which can be a
problem if you don’t own the file but can write to the directory.
.SUFFIXES: .cc # $(.SUFFIXES)

.cc.o:
@rm -f $@
$(CPP) -c $(CFLAGS) $(INCLUDES) -o $@ $*.cc

.c.o:
@rm -f $@
$(CC) -c $(CFLAGS) $(INCLUDES) -o $@ $*.c

GEN_DIR = gen/
LIB_DIR = lib/
NS = ns
NSX = nsx
NSE = nse

To allow conf/makefile.win overwrite this macro
We will set these two macros to empty in conf/makefile.win since VC6.0
does not seem to support the STL in gcc 2.8 and up.
OBJ_STL = diffusion3/lib/nr/nr.o diffusion3/lib/dr.o \
diffusion3/ns/diffagent.o diffusion3/ns/diffrtg.o \
diffusion3/ns/difftimer.o \
diffusion3/diffusion/diffusion.o \
diffusion3/lib/main/attrs.o \

26 CHAPTER 2. INSTALLING THE AGENTJ TOOLKIT

diffusion3/lib/main/iodev.o \
diffusion3/lib/main/timers.o \
diffusion3/lib/main/events.o \
diffusion3/lib/main/message.o \
diffusion3/lib/main/stats.o \
diffusion3/lib/main/tools.o \
diffusion3/lib/drivers/rpc_stats.o \
diffusion3/apps/sysfilters/gradient.o \
diffusion3/apps/sysfilters/log.o \
diffusion3/apps/sysfilters/tag.o \
diffusion3/apps/sysfilters/srcrt.o \
diffusion3/lib/diffapp.o \
diffusion3/apps/pingapp/ping_sender.o \
diffusion3/apps/pingapp/ping_receiver.o \
diffusion3/apps/pingapp/ping_common.o \
diffusion3/apps/pingapp/push_receiver.o \
diffusion3/apps/pingapp/push_sender.o \
diffusion3/apps/gear/geo-attr.o \
diffusion3/apps/gear/geo-routing.o \
diffusion3/apps/gear/geo-tools.o \
nix/hdr_nv.o nix/classifier-nix.o \
nix/nixnode.o nix/nixvec.o \
nix/nixroute.o

NS_TCL_LIB_STL = tcl/lib/ns-diffusion.tcl

WIN32: uncomment the following line to include specific make for VC++
!include <conf/makefile.win>

OBJ_CC = \
tools/random.o tools/rng.o tools/ranvar.o common/misc.o common/timer-handler.o \
common/scheduler.o common/object.o common/packet.o \
common/ip.o routing/route.o common/connector.o common/ttl.o \
trace/trace.o trace/trace-ip.o \
classifier/classifier.o classifier/classifier-addr.o \
classifier/classifier-hash.o \
classifier/classifier-virtual.o \
classifier/classifier-mcast.o \
classifier/classifier-bst.o \
classifier/classifier-mpath.o mcast/replicator.o \
classifier/classifier-mac.o \
classifier/classifier-qs.o \
classifier/classifier-port.o src_rtg/classifier-sr.o \

src_rtg/sragent.o src_rtg/hdr_src.o adc/ump.o \
qs/qsagent.o qs/hdr_qs.o \
apps/app.o apps/telnet.o tcp/tcplib-telnet.o \
tools/trafgen.o trace/traffictrace.o tools/pareto.o \

2.5. INSTALLATION INTO NS2 27

tools/expoo.o tools/cbr_traffic.o \
adc/tbf.o adc/resv.o adc/sa.o tcp/saack.o \
tools/measuremod.o adc/estimator.o adc/adc.o adc/ms-adc.o \
adc/timewindow-est.o adc/acto-adc.o \

adc/pointsample-est.o adc/salink.o adc/actp-adc.o \
adc/hb-adc.o adc/expavg-est.o\
adc/param-adc.o adc/null-estimator.o \
adc/adaptive-receiver.o apps/vatrcvr.o adc/consrcvr.o \
common/agent.o common/message.o apps/udp.o \
common/session-rtp.o apps/rtp.o tcp/rtcp.o \
common/ivs.o \
tcp/tcp.o tcp/tcp-sink.o tcp/tcp-reno.o \
tcp/tcp-newreno.o \
tcp/tcp-vegas.o tcp/tcp-rbp.o tcp/tcp-full.o tcp/rq.o \
baytcp/tcp-full-bay.o baytcp/ftpc.o baytcp/ftps.o \
tcp/scoreboard.o tcp/scoreboard-rq.o tcp/tcp-sack1.o tcp/tcp-fack.o \
tcp/tcp-asym.o tcp/tcp-asym-sink.o tcp/tcp-fs.o \
tcp/tcp-asym-fs.o tcp/tcp-qs.o \
tcp/tcp-int.o tcp/chost.o tcp/tcp-session.o \
tcp/nilist.o \
tools/integrator.o tools/queue-monitor.o \
tools/flowmon.o tools/loss-monitor.o \
queue/queue.o queue/drop-tail.o \
adc/simple-intserv-sched.o queue/red.o \
queue/semantic-packetqueue.o queue/semantic-red.o \
tcp/ack-recons.o \
queue/sfq.o queue/fq.o queue/drr.o queue/srr.o queue/cbq.o \
queue/jobs.o queue/marker.o queue/demarker.o \
link/hackloss.o queue/errmodel.o queue/fec.o\
link/delay.o tcp/snoop.o \
gaf/gaf.o \
link/dynalink.o routing/rtProtoDV.o common/net-interface.o \
mcast/ctrMcast.o mcast/mcast_ctrl.o mcast/srm.o \
common/sessionhelper.o queue/delaymodel.o \
mcast/srm-ssm.o mcast/srm-topo.o \
apps/mftp.o apps/mftp_snd.o apps/mftp_rcv.o \
apps/codeword.o \
routing/alloc-address.o routing/address.o \
$(LIB_DIR)int.Vec.o $(LIB_DIR)int.RVec.o \
$(LIB_DIR)dmalloc_support.o \
webcache/http.o webcache/tcp-simple.o webcache/pagepool.o \
webcache/inval-agent.o webcache/tcpapp.o webcache/http-aux.o \
webcache/mcache.o webcache/webtraf.o \
webcache/webserver.o \
webcache/logweb.o \
empweb/empweb.o \
empweb/empftp.o \
realaudio/realaudio.o \
mac/lanRouter.o classifier/filter.o \

28 CHAPTER 2. INSTALLING THE AGENTJ TOOLKIT

common/pkt-counter.o \
common/Decapsulator.o common/Encapsulator.o \
common/encap.o \
mac/channel.o mac/mac.o mac/ll.o mac/mac-802_11.o \
mac/mac-802_3.o mac/mac-tdma.o mac/smac.o \
mobile/mip.o mobile/mip-reg.o mobile/gridkeeper.o \
mobile/propagation.o mobile/tworayground.o \
mobile/antenna.o mobile/omni-antenna.o \
mobile/shadowing.o mobile/shadowing-vis.o mobile/dumb-agent.o \
common/bi-connector.o common/node.o \
common/mobilenode.o \
mac/arp.o mobile/god.o mobile/dem.o \
mobile/topography.o mobile/modulation.o \
queue/priqueue.o queue/dsr-priqueue.o \
mac/phy.o mac/wired-phy.o mac/wireless-phy.o \
mac/mac-timers.o trace/cmu-trace.o mac/varp.o \
dsdv/dsdv.o dsdv/rtable.o queue/rtqueue.o \
routing/rttable.o \
imep/imep.o imep/dest_queue.o imep/imep_api.o \
imep/imep_rt.o imep/rxmit_queue.o imep/imep_timers.o \
imep/imep_util.o imep/imep_io.o \
tora/tora.o tora/tora_api.o tora/tora_dest.o \
tora/tora_io.o tora/tora_logs.o tora/tora_neighbor.o \
dsr/dsragent.o dsr/hdr_sr.o dsr/mobicache.o dsr/path.o \
dsr/requesttable.o dsr/routecache.o dsr/add_sr.o \
dsr/dsr_proto.o dsr/flowstruct.o dsr/linkcache.o \
dsr/simplecache.o dsr/sr_forwarder.o \
aodv/aodv_logs.o aodv/aodv.o \
aodv/aodv_rtable.o aodv/aodv_rqueue.o \
common/ns-process.o \
satellite/satgeometry.o satellite/sathandoff.o \
satellite/satlink.o satellite/satnode.o \
satellite/satposition.o satellite/satroute.o \
satellite/sattrace.o \
rap/raplist.o rap/rap.o rap/media-app.o rap/utilities.o \
common/fsm.o tcp/tcp-abs.o \
diffusion/diffusion.o diffusion/diff_rate.o diffusion/diff_prob.o \
diffusion/diff_sink.o diffusion/flooding.o diffusion/omni_mcast.o \
diffusion/hash_table.o diffusion/routing_table.o diffusion/iflist.o \
tcp/tfrc.o tcp/tfrc-sink.o mobile/energy-model.o apps/ping.o tcp/tcp-rfc793edu.o \
queue/rio.o queue/semantic-rio.o tcp/tcp-sack-rh.o tcp/scoreboard-rh.o \
plm/loss-monitor-plm.o plm/cbr-traffic-PP.o \
linkstate/hdr-ls.o \
mpls/classifier-addr-mpls.o mpls/ldp.o mpls/mpls-module.o \
routing/rtmodule.o classifier/classifier-hier.o \
routing/addr-params.o \
routealgo/rnode.o \
routealgo/bfs.o \
routealgo/rbitmap.o \

2.5. INSTALLATION INTO NS2 29

routealgo/rlookup.o \
routealgo/routealgo.o \
diffserv/dsred.o diffserv/dsredq.o \
diffserv/dsEdge.o diffserv/dsCore.o \
diffserv/dsPolicy.o diffserv/ew.o\
queue/red-pd.o queue/pi.o queue/vq.o queue/rem.o \
queue/gk.o \
pushback/rate-limit.o pushback/rate-limit-strategy.o \
pushback/ident-tree.o pushback/agg-spec.o \
pushback/logging-data-struct.o \
pushback/rate-estimator.o \
pushback/pushback-queue.o pushback/pushback.o \
common/parentnode.o trace/basetrace.o \
common/simulator.o asim/asim.o \
common/scheduler-map.o common/splay-scheduler.o \
linkstate/ls.o linkstate/rtProtoLS.o \
pgm/classifier-pgm.o pgm/pgm-agent.o pgm/pgm-sender.o \
pgm/pgm-receiver.o mcast/rcvbuf.o \
mcast/classifier-lms.o mcast/lms-agent.o mcast/lms-receiver.o \
mcast/lms-sender.o \
@V_STLOBJ@

don’t allow comments to follow continuation lines

mac-csma.o mac-multihop.o\
sensor-nets/landmark.o mac-simple-wireless.o \
sensor-nets/tags.o sensor-nets/sensor-query.o \
sensor-nets/flood-agent.o \

what was here before is now in emulate/
OBJ_C =

OBJ_COMPAT = $(OBJ_GETOPT) common/win32.o
#XXX compat/win32x.o compat/tkConsole.o

OBJ_EMULATE_CC = \
emulate/net-ip.o \
emulate/net.o \
emulate/tap.o \
emulate/ether.o \
emulate/internet.o \
emulate/ping_responder.o \
emulate/arp.o \
emulate/icmp.o \
emulate/net-pcap.o \
emulate/nat.o \
emulate/iptap.o \
emulate/tcptap.o

30 CHAPTER 2. INSTALLING THE AGENTJ TOOLKIT

OBJ_EMULATE_C = \
emulate/inet.o

OBJ_GEN = $(GEN_DIR)version.o $(GEN_DIR)ns_tcl.o $(GEN_DIR)ptypes.o

SRC = $(OBJ_C:.o=.c) $(OBJ_CC:.o=.cc) \
$(OBJ_EMULATE_C:.o=.c) $(OBJ_EMULATE_CC:.o=.cc) \
$(OBJ_CPP:.o=.cpp) \
common/tclAppInit.cc common/tkAppInit.cc

OBJ = $(OBJ_C) $(OBJ_CC) $(OBJ_GEN) $(OBJ_COMPAT) $(OBJ_PROTOLIB_CPP) $(OBJ_AGENTJ_CPP)

CLEANFILES = ns nse nsx ns.dyn $(OBJ) $(OBJ_EMULATE_CC) \
$(OBJ_EMULATE_C) common/tclAppInit.o \
$(GEN_DIR)* $(NS).core core core.$(NS) core.$(NSX) core.$(NSE) \
common/ptypes2tcl common/ptypes2tcl.o

SUBDIRS=\
indep-utils/cmu-scen-gen/setdest \
indep-utils/webtrace-conv/dec \
indep-utils/webtrace-conv/epa \
indep-utils/webtrace-conv/nlanr \
indep-utils/webtrace-conv/ucb

BUILD_NSE = @build_nse@

all: $(NS) $(BUILD_NSE) all-recursive

all-recursive:
for i in $(SUBDIRS); do (cd $$i; $(MAKE) all;) done

$(NS): $(OBJ) common/tclAppInit.o Makefile
$(LINK) $(LDFLAGS) $(LDOUT)$@ \
common/tclAppInit.o $(OBJ) $(LIB)

Makefile: Makefile.in
@echo "Makefile.in is newer than Makefile."
@echo "You need to re-run configure."
false

$(NSE): $(OBJ) common/tclAppInit.o $(OBJ_EMULATE_CC) $(OBJ_EMULATE_C)
$(LINK) $(LDFLAGS) $(LDOUT)$@ \
common/tclAppInit.o $(OBJ) \
$(OBJ_EMULATE_CC) $(OBJ_EMULATE_C) $(LIB)

ns.dyn: $(OBJ) common/tclAppInit.o
$(LINK) $(LDFLAGS) -o $@ \

2.5. INSTALLATION INTO NS2 31

common/tclAppInit.o $(OBJ) $(LIB)

libagentj.jnilib: $(OBJ) common/tclAppInit.o
$(LINK) $(AGENTJ_SHARED_LDFLAGS) -o $@ \
common/tclAppInit.o $(OBJ) $(LIB)
mv libagentj.jnilib $(AGENTJ_LIB_DIR)

PURIFY = purify -cache-dir=/tmp
ns-pure: $(OBJ) common/tclAppInit.o
$(PURIFY) $(LINK) $(LDFLAGS) -o $@ \
common/tclAppInit.o $(OBJ) $(LIB)

NS_TCL_LIB = \
tcl/lib/ns-compat.tcl \
tcl/lib/ns-default.tcl \
tcl/lib/ns-errmodel.tcl \
tcl/lib/ns-lib.tcl \
tcl/lib/ns-link.tcl \
tcl/lib/ns-mobilenode.tcl \
tcl/lib/ns-sat.tcl \
tcl/lib/ns-cmutrace.tcl \
tcl/lib/ns-node.tcl \
tcl/lib/ns-rtmodule.tcl \
tcl/lib/ns-hiernode.tcl \
tcl/lib/ns-packet.tcl \
tcl/lib/ns-queue.tcl \
tcl/lib/ns-source.tcl \
tcl/lib/ns-nam.tcl \
tcl/lib/ns-trace.tcl \
tcl/lib/ns-agent.tcl \
tcl/lib/ns-random.tcl \
tcl/lib/ns-namsupp.tcl \
tcl/lib/ns-address.tcl \
tcl/lib/ns-intserv.tcl \
tcl/lib/ns-autoconf.tcl \
tcl/rtp/session-rtp.tcl \
tcl/lib/ns-mip.tcl \
tcl/rtglib/dynamics.tcl \
tcl/rtglib/route-proto.tcl \
tcl/rtglib/algo-route-proto.tcl \
tcl/rtglib/ns-rtProtoLS.tcl \

tcl/interface/ns-iface.tcl \
tcl/mcast/BST.tcl \

tcl/mcast/ns-mcast.tcl \
tcl/mcast/McastProto.tcl \
tcl/mcast/DM.tcl \

tcl/mcast/srm.tcl \
tcl/mcast/srm-adaptive.tcl \
tcl/mcast/srm-ssm.tcl \

32 CHAPTER 2. INSTALLING THE AGENTJ TOOLKIT

tcl/mcast/timer.tcl \
tcl/mcast/McastMonitor.tcl \
tcl/mcast/mftp_snd.tcl \
tcl/mcast/mftp_rcv.tcl \
tcl/mcast/mftp_rcv_stat.tcl \
tcl/mobility/dsdv.tcl \
tcl/mobility/dsr.tcl \

tcl/ctr-mcast/CtrMcast.tcl \
tcl/ctr-mcast/CtrMcastComp.tcl \
tcl/ctr-mcast/CtrRPComp.tcl \

tcl/rlm/rlm.tcl \
tcl/rlm/rlm-ns.tcl \
tcl/session/session.tcl \
tcl/lib/ns-route.tcl \
tcl/emulate/ns-emulate.tcl \
tcl/lan/vlan.tcl \
tcl/lan/abslan.tcl \
tcl/lan/ns-ll.tcl \
tcl/lan/ns-mac.tcl \
tcl/webcache/http-agent.tcl \
tcl/webcache/http-server.tcl \
tcl/webcache/http-cache.tcl \
tcl/webcache/http-mcache.tcl \
tcl/webcache/webtraf.tcl \
tcl/webcache/empweb.tcl \
tcl/webcache/empftp.tcl \
tcl/plm/plm.tcl \
tcl/plm/plm-ns.tcl \
tcl/plm/plm-topo.tcl \
tcl/mpls/ns-mpls-classifier.tcl \
tcl/mpls/ns-mpls-ldpagent.tcl \
tcl/mpls/ns-mpls-node.tcl \
tcl/mpls/ns-mpls-simulator.tcl \
tcl/lib/ns-pushback.tcl \
tcl/lib/ns-srcrt.tcl \
tcl/mcast/ns-lms.tcl \
tcl/lib/ns-qsnode.tcl \
@V_NS_TCL_LIB_STL@

$(GEN_DIR)ns_tcl.cc: $(NS_TCL_LIB)
$(TCLSH) bin/tcl-expand.tcl tcl/lib/ns-lib.tcl @V_NS_TCL_LIB_STL@ | $(TCL2C) et_ns_lib > $@

$(GEN_DIR)version.c: VERSION
$(RM) $@
$(TCLSH) bin/string2c.tcl version_string < VERSION > $@

$(GEN_DIR)ptypes.cc: common/ptypes2tcl common/packet.h
./common/ptypes2tcl > $@

2.5. INSTALLATION INTO NS2 33

common/ptypes2tcl: common/ptypes2tcl.o
$(LINK) $(LDFLAGS) $(LDOUT)$@ common/ptypes2tcl.o

common/ptypes2tcl.o: common/ptypes2tcl.cc common/packet.h

install: force install-ns install-man install-recursive

install-ns: force
$(INSTALL) -m 555 -o bin -g bin ns $(DESTDIR)$(BINDEST)

install-man: force
$(INSTALL) -m 444 -o bin -g bin ns.1 $(DESTDIR)$(MANDEST)/man1

install-recursive: force
for i in $(SUBDIRS); do (cd $$i; $(MAKE) install;) done

clean:
$(RM) $(CLEANFILES)

AUTOCONF_GEN = tcl/lib/ns-autoconf.tcl
distclean: distclean-recursive
$(RM) $(CLEANFILES) Makefile config.cache config.log config.status \

autoconf.h gnuc.h os-proto.h $(AUTOCONF_GEN); \
$(MV) .configure .configure- ;\
echo "Moved .configure to .configure-"

distclean-recursive:
for i in $(SUBDIRS); do (cd $$i; $(MAKE) clean; $(RM) Makefile;) done

tags: force
ctags -wtd *.cc *.h webcache/*.cc webcache/*.h dsdv/*.cc dsdv/*.h \
dsr/*.cc dsr/*.h webcache/*.cc webcache/*.h lib/*.cc lib/*.h \
../Tcl/*.cc ../Tcl/*.h

TAGS: force
etags *.cc *.h webcache/*.cc webcache/*.h dsdv/*.cc dsdv/*.h \
dsr/*.cc dsr/*.h webcache/*.cc webcache/*.h lib/*.cc lib/*.h \
../Tcl/*.cc ../Tcl/*.h

tcl/lib/TAGS: force
(\
cd tcl/lib; \
$(TCLSH) ../../bin/tcl-expand.tcl ns-lib.tcl | grep ’^### tcl-expand.tcl:
begin’ | awk ’{print $$5}’ >.tcl_files; \
etags --lang=none -r ’/^[\t]*proc[\t]+\([^ \t]+\)/\1/’ ‘cat .tcl_files‘; \
etags --append --lang=none -r ’/^\([A-Z][^ \t]+\)[\t]+\(instproc\|proc\)
[\t]+\([^ \t]+\)[\t]+/\1::\3/’ ‘cat .tcl_files‘; \
)

34 CHAPTER 2. INSTALLING THE AGENTJ TOOLKIT

depend: $(SRC)
$(MKDEP) $(CFLAGS) $(INCLUDES) $(SRC)

srctar:
@cwd=‘pwd‘ ; dir=‘basename $$cwd‘ ; \

name=ns-‘cat VERSION | tr A-Z a-z‘ ; \
tar=ns-src-‘cat VERSION‘.tar.gz ; \
list="" ; \
for i in ‘cat FILES‘ ; do list="$$list $$name/$$i" ; done; \
echo \
"(rm -f $$tar; cd .. ; ln -s $$dir $$name)" ; \
(rm -f $$tar; cd .. ; ln -s $$dir $$name) ; \
echo \
"(cd .. ; tar cfh $$tar [lots of files])" ; \
(cd .. ; tar cfh - $$list) | gzip -c > $$tar ; \
echo \
"rm ../$$name; chmod 444 $$tar" ; \
rm ../$$name; chmod 444 $$tar

force:

test: force
./validate

.cpp.o:
@rm -f $@
$(CC) -c $(CFLAGS) $(INCLUDES) -o $@ $*.cpp

Create makefile.vc for Win32 development by replacing:
"# !include ..." -> "!include ..."
makefile.vc: Makefile.in
$(PERL) bin/gen-vcmake.pl < Makefile.in > makefile.vc
$(PERL) -pe ’s/^# (\!include)/\!include/o’ < Makefile.in > makefile.vc

2.5.2 The NS-2 Makefile for Linux

At the beginning of section 2.5, instructions were given for including Protolib
and Agentj dependencies in the NS-2 Makefile for Linux platforms. A
complete version of my Makefile, used to build NS-2 version 2.26 on a Linux
box running a 2.6.7 kernel and version 1.5.0 of Sun’s JDK, is provided below:

Generated automatically from Makefile.in by configure.
Copyright (c) 1994, 1995, 1996
The Regents of the University of California. All rights reserved.
#
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that: (1) source code distributions

2.5. INSTALLATION INTO NS2 35

retain the above copyright notice and this paragraph in its entirety, (2)
distributions including binary code include the above copyright notice and
this paragraph in its entirety in the documentation or other materials
provided with the distribution, and (3) all advertising materials mentioning
features or use of this software display the following acknowledgement:
‘‘This product includes software developed by the University of California,
Lawrence Berkeley Laboratory and its contributors.’’ Neither the name of
the University nor the names of its contributors may be used to endorse
or promote products derived from this software without specific prior
written permission.
THIS SOFTWARE IS PROVIDED ‘‘AS IS’’ AND WITHOUT ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
#
@(#) $Header: 2002/10/09 15:34:11

#
Various configurable paths (remember to edit Makefile.in, not Makefile)
#

Top level hierarchy
prefix = /usr/local
Pathname of directory to install the binary
BINDEST = /usr/local/bin
Pathname of directory to install the man page
MANDEST = /usr/local/man

BLANK = # make a blank space. DO NOT add anything to this line

The following will be redefined under Windows (see WIN32 lable below)
#CC = gcc
#CPP = c++
CC = gcc
CPP = g++
LINK = $(CPP)
MKDEP = ./conf/mkdep
TCLSH = /home/iandow/netsim/p2ps-ns2/ns-allinone-2.26/bin/tclsh8.3
TCL2C = ../tclcl-1.0b13/tcl2c++
AR = ar rc $(BLANK)

RANLIB = ranlib
INSTALL = /usr/bin/install -c
LN = ln
TEST = test
RM = rm -f
MV = mv
PERL = /usr/bin/perl

for diffusion

36 CHAPTER 2. INSTALLING THE AGENTJ TOOLKIT

#DIFF_INCLUDES = "./diffusion3/main ./diffusion3/lib ./diffusion3/nr ./diffusion3/ns"

CCOPT =
STATIC =
LDFLAGS = $(STATIC) -Wl,--rpath -Wl,$(JAVA_HOME)/jre/lib/i386/server/:$(JAVA_HOME)/jre/lib/i386/
LDOUT = -o $(BLANK)

########################### Protolib Section #######################

PROTOLIB = ./protolib
PROTOLIB_INCLUDES = -I$(PROTOLIB)/common -I$(PROTOLIB)/ns
PROTOLIB_FLAGS = -DUNIX -DNS2 -DPROTO_DEBUG -DHAVE_ASSERT

OBJ_PROTOLIB_CPP = protolib/ns/nsProtoAgent.o \
protolib/common/protoSim.o \
protolib/common/networkAddress.o \
protolib/common/protocolTimer.o \
protolib/common/debug.o

OBJ_AGENTJ_CPP = $(AGENTJ_UTILS)/LinkedList.o $(PAI_FACTORY)/PAIDispatcher.o \
$(PAI_FACTORY)/PAIEngine.o $(PAI_FACTORY)/PAIFactory.o \
$(PAI_FACTORY)/PAIMultipleListener.o $(PAI_FACTORY)/PAISocket.o \
$(PAI_FACTORY)/PAITimer.o $(PAI_FACTORY)/PAIEnvironment.o \
$(PAI_FACTORY)/PAIListener.o \
$(PAI_FACTORY_NS)/PAINS2UDPSocket.o \
$(PAI_FACTORY_NS)/PAINS2Timer.o \
$(PAI_API)/PAI.o \
$(PAI_AGENT)/PAIAgent.o $(PAI_AGENT)/PAISimpleAgent.o \
$(AGENTJ_C_SRC)/C2JBroker.o $(AGENTJ_C_SRC)/Agentj.o \
$(PAI_IMP_JNI)/JNIBridge.o $(PAI_IMP_JNI)/JNIImp.o

############################## AgentJ Section ########################

AGENTJ_SRC = $(AGENTJ)/src/c
AGENTJ_LIB_DIR = $(AGENTJ)/lib
AGENTJ_C_SRC = $(AGENTJ_SRC)/agentj
AGENTJ_UTILS = $(AGENTJ_SRC)/utils
PAI = $(AGENTJ_SRC)/pai
PAI_IMP = $(PAI)/imp
PAI_API = $(PAI)/api
PAI_AGENT = $(PAI_IMP)/agent
PAI_FACTORY = $(PAI_IMP)/factory
PAI_FACTORY_NET = $(PAI_FACTORY)/net
PAI_FACTORY_NS = $(PAI_FACTORY)/ns
PAI_IMP_JNI = $(PAI_IMP)/jni

AGENTJ_INCLUDES = -I$(JAVA_HOME)/include -I$(JAVA_HOME)/include/linux -I$(AGENTJ_C_SRC) -I$(AGENTJ_UTILS) -I$(PAI) -I$(PAI_AGENT) -I$(PAI_API) -I$(PAI_FACTORY) -I$(PAI_FACTORY_NET) -I$(PAI_FACTORY_NS) -I$(PAI_IMP_JNI)

2.5. INSTALLATION INTO NS2 37

AGENTJ_LIB = -L$(JAVA_HOME)/jre/lib/i386/server/ -ljvm
AGENTJ_SHARED_LDFLAGS = -shared

DEFINE = -DTCP_DELAY_BIND_ALL -DNO_TK -DTCLCL_CLASSINSTVAR -DNDEBUG -DLINUX_TCP_HEADER -DUSE_SHM -DHAVE_LIBTCLCL -DHAVE_TCLCL_H -DHAVE_LIBOTCL1_0A8 -DHAVE_OTCL_H -DHAVE_LIBTK8_3 -DHAVE_TK_H -DHAVE_LIBTCL8_3 -DHAVE_TCL_H -DHAVE_CONFIG_H -DNS_DIFFUSION -DSMAC_NO_SYNC -DSTL_NAMESPACE=std -DUSE_SINGLE_ADDRESS_SPACE

INCLUDES = \
$(PROTOLIB_INCLUDES) \
$(AGENTJ_INCLUDES) \
-I. \
-I/home/iandow/netsim/p2ps-ns2/ns-allinone-2.26/tclcl-1.0b13 -I/home/iandow/netsim/p2ps-ns2/ns-allinone-2.26/otcl-1.0a8 -I/home/iandow/netsim/p2ps-ns2/ns-allinone-2.26/include -I/home/iandow/netsim/p2ps-ns2/ns-allinone-2.26/include -I/usr/include/pcap \
-I/home/iandow/netsim/p2ps-ns2/ns-allinone-2.26/ns-2.26/common \
-I/home/iandow/netsim/p2ps-ns2/ns-allinone-2.26/tclcl-1.0b13 \
-I/home/iandow/netsim/p2ps-ns2/ns-allinone-2.26/otcl-1.0a8 \
-I/home/iandow/netsim/p2ps-ns2/ns-allinone-2.26/include \
-I/home/iandow/netsim/p2ps-ns2/ns-allinone-2.26/include \
-I/usr/include/pcap \
-I./tcp -I./common -I./link -I./queue \
-I./adc -I./apps -I./mac -I./mobile -I./trace \
-I./routing -I./tools -I./classifier -I./mcast \
-I./diffusion3/lib/main -I./diffusion3/lib \
-I./diffusion3/lib/nr -I./diffusion3/ns \
-I./diffusion3/diffusion -I./asim/ -I./qs

LIB = \
-L/home/iandow/netsim/p2ps-ns2/ns-allinone-2.26/tclcl-1.0b13 -ltclcl -L/home/iandow/netsim/p2ps-ns2/ns-allinone-2.26/otcl-1.0a8 -lotcl -L/home/iandow/netsim/p2ps-ns2/ns-allinone-2.26/lib -ltk8.3 -L/home/iandow/netsim/p2ps-ns2/ns-allinone-2.26/lib -ltcl8.3 \
-L/usr/X11R6/lib -lXext -lX11 \
-lnsl -lpcap -ldl \
$(AGENTJ_LIB) \
-lm
-L${exec_prefix}/lib \

CFLAGS = -g $(CCOPT) $(DEFINE) $(PROTOLIB_FLAGS)

Explicitly define compilation rules since SunOS 4’s make doesn’t like gcc.
Also, gcc does not remove the .o before forking ’as’, which can be a
problem if you don’t own the file but can write to the directory.
.SUFFIXES: .cc # $(.SUFFIXES)

.cc.o:
@rm -f $@
$(CPP) -c $(CFLAGS) $(INCLUDES) -o $@ $*.cc

.c.o:
@rm -f $@
$(CC) -c $(CFLAGS) $(INCLUDES) -o $@ $*.c

.cpp.o: @rm -f $@
$(CC) -c $(CFLAGS) $(INCLUDES) -o $@ $*.cpp

38 CHAPTER 2. INSTALLING THE AGENTJ TOOLKIT

GEN_DIR = gen/
LIB_DIR = lib/
NS = ns
NSX = nsx
NSE = nse

To allow conf/makefile.win overwrite this macro
We will set these two macros to empty in conf/makefile.win since VC6.0
does not seem to support the STL in gcc 2.8 and up.
OBJ_STL = diffusion3/lib/nr/nr.o diffusion3/lib/dr.o \
diffusion3/ns/diffagent.o diffusion3/ns/diffrtg.o \
diffusion3/ns/difftimer.o \
diffusion3/diffusion/diffusion.o \
diffusion3/lib/main/attrs.o \
diffusion3/lib/main/iodev.o \
diffusion3/lib/main/timers.o \
diffusion3/lib/main/events.o \
diffusion3/lib/main/message.o \
diffusion3/lib/main/stats.o \
diffusion3/lib/main/tools.o \
diffusion3/lib/drivers/rpc_stats.o \
diffusion3/apps/sysfilters/gradient.o \
diffusion3/apps/sysfilters/log.o \
diffusion3/apps/sysfilters/tag.o \
diffusion3/apps/sysfilters/srcrt.o \
diffusion3/lib/diffapp.o \
diffusion3/apps/pingapp/ping_sender.o \
diffusion3/apps/pingapp/ping_receiver.o \
diffusion3/apps/pingapp/ping_common.o \
diffusion3/apps/pingapp/push_receiver.o \
diffusion3/apps/pingapp/push_sender.o \
diffusion3/apps/gear/geo-attr.o \
diffusion3/apps/gear/geo-routing.o \
diffusion3/apps/gear/geo-tools.o \
nix/hdr_nv.o nix/classifier-nix.o \
nix/nixnode.o nix/nixvec.o \
nix/nixroute.o

NS_TCL_LIB_STL = tcl/lib/ns-diffusion.tcl

WIN32: uncomment the following line to include specific make for VC++
!include <conf/makefile.win>

OBJ_CC = \
tools/random.o tools/rng.o tools/ranvar.o common/misc.o common/timer-handler.o \
common/scheduler.o common/object.o common/packet.o \
common/ip.o routing/route.o common/connector.o common/ttl.o \

2.5. INSTALLATION INTO NS2 39

trace/trace.o trace/trace-ip.o \
classifier/classifier.o classifier/classifier-addr.o \
classifier/classifier-hash.o \
classifier/classifier-virtual.o \
classifier/classifier-mcast.o \
classifier/classifier-bst.o \
classifier/classifier-mpath.o mcast/replicator.o \
classifier/classifier-mac.o \
classifier/classifier-qs.o \
classifier/classifier-port.o src_rtg/classifier-sr.o \

src_rtg/sragent.o src_rtg/hdr_src.o adc/ump.o \
qs/qsagent.o qs/hdr_qs.o \
apps/app.o apps/telnet.o tcp/tcplib-telnet.o \
tools/trafgen.o trace/traffictrace.o tools/pareto.o \
tools/expoo.o tools/cbr_traffic.o \
adc/tbf.o adc/resv.o adc/sa.o tcp/saack.o \
tools/measuremod.o adc/estimator.o adc/adc.o adc/ms-adc.o \
adc/timewindow-est.o adc/acto-adc.o \

adc/pointsample-est.o adc/salink.o adc/actp-adc.o \
adc/hb-adc.o adc/expavg-est.o\
adc/param-adc.o adc/null-estimator.o \
adc/adaptive-receiver.o apps/vatrcvr.o adc/consrcvr.o \
common/agent.o common/message.o apps/udp.o \
common/session-rtp.o apps/rtp.o tcp/rtcp.o \
common/ivs.o \
tcp/tcp.o tcp/tcp-sink.o tcp/tcp-reno.o \
tcp/tcp-newreno.o \
tcp/tcp-vegas.o tcp/tcp-rbp.o tcp/tcp-full.o tcp/rq.o \
baytcp/tcp-full-bay.o baytcp/ftpc.o baytcp/ftps.o \
tcp/scoreboard.o tcp/scoreboard-rq.o tcp/tcp-sack1.o tcp/tcp-fack.o \
tcp/tcp-asym.o tcp/tcp-asym-sink.o tcp/tcp-fs.o \
tcp/tcp-asym-fs.o tcp/tcp-qs.o \
tcp/tcp-int.o tcp/chost.o tcp/tcp-session.o \
tcp/nilist.o \
tools/integrator.o tools/queue-monitor.o \
tools/flowmon.o tools/loss-monitor.o \
queue/queue.o queue/drop-tail.o \
adc/simple-intserv-sched.o queue/red.o \
queue/semantic-packetqueue.o queue/semantic-red.o \
tcp/ack-recons.o \
queue/sfq.o queue/fq.o queue/drr.o queue/srr.o queue/cbq.o \
queue/jobs.o queue/marker.o queue/demarker.o \
link/hackloss.o queue/errmodel.o queue/fec.o\
link/delay.o tcp/snoop.o \
gaf/gaf.o \
link/dynalink.o routing/rtProtoDV.o common/net-interface.o \
mcast/ctrMcast.o mcast/mcast_ctrl.o mcast/srm.o \
common/sessionhelper.o queue/delaymodel.o \
mcast/srm-ssm.o mcast/srm-topo.o \

40 CHAPTER 2. INSTALLING THE AGENTJ TOOLKIT

apps/mftp.o apps/mftp_snd.o apps/mftp_rcv.o \
apps/codeword.o \
routing/alloc-address.o routing/address.o \
$(LIB_DIR)int.Vec.o $(LIB_DIR)int.RVec.o \
$(LIB_DIR)dmalloc_support.o \
webcache/http.o webcache/tcp-simple.o webcache/pagepool.o \
webcache/inval-agent.o webcache/tcpapp.o webcache/http-aux.o \
webcache/mcache.o webcache/webtraf.o \
webcache/webserver.o \
webcache/logweb.o \
empweb/empweb.o \
empweb/empftp.o \
realaudio/realaudio.o \
mac/lanRouter.o classifier/filter.o \
common/pkt-counter.o \
common/Decapsulator.o common/Encapsulator.o \
common/encap.o \
mac/channel.o mac/mac.o mac/ll.o mac/mac-802_11.o \
mac/mac-802_3.o mac/mac-tdma.o mac/smac.o \
mobile/mip.o mobile/mip-reg.o mobile/gridkeeper.o \
mobile/propagation.o mobile/tworayground.o \
mobile/antenna.o mobile/omni-antenna.o \
mobile/shadowing.o mobile/shadowing-vis.o mobile/dumb-agent.o \
common/bi-connector.o common/node.o \
common/mobilenode.o \
mac/arp.o mobile/god.o mobile/dem.o \
mobile/topography.o mobile/modulation.o \
queue/priqueue.o queue/dsr-priqueue.o \
mac/phy.o mac/wired-phy.o mac/wireless-phy.o \
mac/mac-timers.o trace/cmu-trace.o mac/varp.o \
dsdv/dsdv.o dsdv/rtable.o queue/rtqueue.o \
routing/rttable.o \
imep/imep.o imep/dest_queue.o imep/imep_api.o \
imep/imep_rt.o imep/rxmit_queue.o imep/imep_timers.o \
imep/imep_util.o imep/imep_io.o \
tora/tora.o tora/tora_api.o tora/tora_dest.o \
tora/tora_io.o tora/tora_logs.o tora/tora_neighbor.o \
dsr/dsragent.o dsr/hdr_sr.o dsr/mobicache.o dsr/path.o \
dsr/requesttable.o dsr/routecache.o dsr/add_sr.o \
dsr/dsr_proto.o dsr/flowstruct.o dsr/linkcache.o \
dsr/simplecache.o dsr/sr_forwarder.o \
aodv/aodv_logs.o aodv/aodv.o \
aodv/aodv_rtable.o aodv/aodv_rqueue.o \
common/ns-process.o \
satellite/satgeometry.o satellite/sathandoff.o \
satellite/satlink.o satellite/satnode.o \
satellite/satposition.o satellite/satroute.o \
satellite/sattrace.o \
rap/raplist.o rap/rap.o rap/media-app.o rap/utilities.o \

2.5. INSTALLATION INTO NS2 41

common/fsm.o tcp/tcp-abs.o \
diffusion/diffusion.o diffusion/diff_rate.o diffusion/diff_prob.o \
diffusion/diff_sink.o diffusion/flooding.o diffusion/omni_mcast.o \
diffusion/hash_table.o diffusion/routing_table.o diffusion/iflist.o \
tcp/tfrc.o tcp/tfrc-sink.o mobile/energy-model.o apps/ping.o tcp/tcp-rfc793edu.o \
queue/rio.o queue/semantic-rio.o tcp/tcp-sack-rh.o tcp/scoreboard-rh.o \
plm/loss-monitor-plm.o plm/cbr-traffic-PP.o \
linkstate/hdr-ls.o \
mpls/classifier-addr-mpls.o mpls/ldp.o mpls/mpls-module.o \
routing/rtmodule.o classifier/classifier-hier.o \
routing/addr-params.o \
routealgo/rnode.o \
routealgo/bfs.o \
routealgo/rbitmap.o \
routealgo/rlookup.o \
routealgo/routealgo.o \
diffserv/dsred.o diffserv/dsredq.o \
diffserv/dsEdge.o diffserv/dsCore.o \
diffserv/dsPolicy.o diffserv/ew.o\
queue/red-pd.o queue/pi.o queue/vq.o queue/rem.o \
queue/gk.o \
pushback/rate-limit.o pushback/rate-limit-strategy.o \
pushback/ident-tree.o pushback/agg-spec.o \
pushback/logging-data-struct.o \
pushback/rate-estimator.o \
pushback/pushback-queue.o pushback/pushback.o \
common/parentnode.o trace/basetrace.o \
common/simulator.o asim/asim.o \
common/scheduler-map.o common/splay-scheduler.o \
linkstate/ls.o linkstate/rtProtoLS.o \
pgm/classifier-pgm.o pgm/pgm-agent.o pgm/pgm-sender.o \
pgm/pgm-receiver.o mcast/rcvbuf.o \
mcast/classifier-lms.o mcast/lms-agent.o mcast/lms-receiver.o \
mcast/lms-sender.o \
$(OBJ_STL)

don’t allow comments to follow continuation lines

mac-csma.o mac-multihop.o\
sensor-nets/landmark.o mac-simple-wireless.o \
sensor-nets/tags.o sensor-nets/sensor-query.o \
sensor-nets/flood-agent.o \

what was here before is now in emulate/
OBJ_C =

OBJ_COMPAT = $(OBJ_GETOPT) common/win32.o
#XXX compat/win32x.o compat/tkConsole.o

42 CHAPTER 2. INSTALLING THE AGENTJ TOOLKIT

OBJ_EMULATE_CC = \
emulate/net-ip.o \
emulate/net.o \
emulate/tap.o \
emulate/ether.o \
emulate/internet.o \
emulate/ping_responder.o \
emulate/arp.o \
emulate/icmp.o \
emulate/net-pcap.o \
emulate/nat.o \
emulate/iptap.o \
emulate/tcptap.o

OBJ_EMULATE_C = \
emulate/inet.o

OBJ_GEN = $(GEN_DIR)version.o $(GEN_DIR)ns_tcl.o $(GEN_DIR)ptypes.o

SRC = $(OBJ_C:.o=.c) $(OBJ_CC:.o=.cc) \
$(OBJ_EMULATE_C:.o=.c) $(OBJ_EMULATE_CC:.o=.cc) \
common/tclAppInit.cc common/tkAppInit.cc $(OBJ_CPP:.o=.cpp)

OBJ = $(OBJ_C) $(OBJ_CC) $(OBJ_GEN) $(OBJ_COMPAT) $(OBJ_PROTOLIB_CPP) $(OBJ_AGENTJ_CPP)

CLEANFILES = ns nse nsx ns.dyn $(OBJ) $(OBJ_EMULATE_CC) \
$(OBJ_EMULATE_C) common/tclAppInit.o \
$(GEN_DIR)* $(NS).core core core.$(NS) core.$(NSX) core.$(NSE) \
common/ptypes2tcl common/ptypes2tcl.o

SUBDIRS=\
indep-utils/cmu-scen-gen/setdest \
indep-utils/webtrace-conv/dec \
indep-utils/webtrace-conv/epa \
indep-utils/webtrace-conv/nlanr \
indep-utils/webtrace-conv/ucb

BUILD_NSE = nse

all: $(NS) $(BUILD_NSE) all-recursive

all-recursive:
for i in $(SUBDIRS); do (cd $$i; $(MAKE) all;) done

$(NS): $(OBJ) common/tclAppInit.o Makefile
$(LINK) $(LDFLAGS) $(LDOUT)$@ \
common/tclAppInit.o $(OBJ) $(LIB)

2.5. INSTALLATION INTO NS2 43

Makefile: Makefile.in
@echo "Makefile.in is newer than Makefile."
@echo "You need to re-run configure."
false

$(NSE): $(OBJ) common/tclAppInit.o $(OBJ_EMULATE_CC) $(OBJ_EMULATE_C)
$(LINK) $(LDFLAGS) $(LDOUT)$@ \
common/tclAppInit.o $(OBJ) \
$(OBJ_EMULATE_CC) $(OBJ_EMULATE_C) $(LIB)

ns.dyn: $(OBJ) common/tclAppInit.o
$(LINK) $(LDFLAGS) -o $@ \
common/tclAppInit.o $(OBJ) $(LIB)

PURIFY = purify -cache-dir=/tmp
ns-pure: $(OBJ) common/tclAppInit.o
$(PURIFY) $(LINK) $(LDFLAGS) -o $@ \
common/tclAppInit.o $(OBJ) $(LIB)

NS_TCL_LIB = \
tcl/lib/ns-compat.tcl \
tcl/lib/ns-default.tcl \
tcl/lib/ns-errmodel.tcl \
tcl/lib/ns-lib.tcl \
tcl/lib/ns-link.tcl \
tcl/lib/ns-mobilenode.tcl \
tcl/lib/ns-sat.tcl \
tcl/lib/ns-cmutrace.tcl \
tcl/lib/ns-node.tcl \
tcl/lib/ns-rtmodule.tcl \
tcl/lib/ns-hiernode.tcl \
tcl/lib/ns-packet.tcl \
tcl/lib/ns-queue.tcl \
tcl/lib/ns-source.tcl \
tcl/lib/ns-nam.tcl \
tcl/lib/ns-trace.tcl \
tcl/lib/ns-agent.tcl \
tcl/lib/ns-random.tcl \
tcl/lib/ns-namsupp.tcl \
tcl/lib/ns-address.tcl \
tcl/lib/ns-intserv.tcl \
tcl/lib/ns-autoconf.tcl \
tcl/rtp/session-rtp.tcl \
tcl/lib/ns-mip.tcl \
tcl/rtglib/dynamics.tcl \
tcl/rtglib/route-proto.tcl \
tcl/rtglib/algo-route-proto.tcl \
tcl/rtglib/ns-rtProtoLS.tcl \

44 CHAPTER 2. INSTALLING THE AGENTJ TOOLKIT

tcl/interface/ns-iface.tcl \
tcl/mcast/BST.tcl \

tcl/mcast/ns-mcast.tcl \
tcl/mcast/McastProto.tcl \
tcl/mcast/DM.tcl \

tcl/mcast/srm.tcl \
tcl/mcast/srm-adaptive.tcl \
tcl/mcast/srm-ssm.tcl \
tcl/mcast/timer.tcl \
tcl/mcast/McastMonitor.tcl \
tcl/mcast/mftp_snd.tcl \
tcl/mcast/mftp_rcv.tcl \
tcl/mcast/mftp_rcv_stat.tcl \
tcl/mobility/dsdv.tcl \
tcl/mobility/dsr.tcl \

tcl/ctr-mcast/CtrMcast.tcl \
tcl/ctr-mcast/CtrMcastComp.tcl \
tcl/ctr-mcast/CtrRPComp.tcl \

tcl/rlm/rlm.tcl \
tcl/rlm/rlm-ns.tcl \
tcl/session/session.tcl \
tcl/lib/ns-route.tcl \
tcl/emulate/ns-emulate.tcl \
tcl/lan/vlan.tcl \
tcl/lan/abslan.tcl \
tcl/lan/ns-ll.tcl \
tcl/lan/ns-mac.tcl \
tcl/webcache/http-agent.tcl \
tcl/webcache/http-server.tcl \
tcl/webcache/http-cache.tcl \
tcl/webcache/http-mcache.tcl \
tcl/webcache/webtraf.tcl \
tcl/webcache/empweb.tcl \
tcl/webcache/empftp.tcl \
tcl/plm/plm.tcl \
tcl/plm/plm-ns.tcl \
tcl/plm/plm-topo.tcl \
tcl/mpls/ns-mpls-classifier.tcl \
tcl/mpls/ns-mpls-ldpagent.tcl \
tcl/mpls/ns-mpls-node.tcl \
tcl/mpls/ns-mpls-simulator.tcl \
tcl/lib/ns-pushback.tcl \
tcl/lib/ns-srcrt.tcl \
tcl/mcast/ns-lms.tcl \
tcl/lib/ns-qsnode.tcl \
$(NS_TCL_LIB_STL)

$(GEN_DIR)ns_tcl.cc: $(NS_TCL_LIB)
$(TCLSH) bin/tcl-expand.tcl tcl/lib/ns-lib.tcl $(NS_TCL_LIB_STL) | $(TCL2C) et_ns_lib > $@

2.5. INSTALLATION INTO NS2 45

$(GEN_DIR)version.c: VERSION
$(RM) $@
$(TCLSH) bin/string2c.tcl version_string < VERSION > $@

$(GEN_DIR)ptypes.cc: common/ptypes2tcl common/packet.h
./common/ptypes2tcl > $@

common/ptypes2tcl: common/ptypes2tcl.o
$(LINK) $(LDFLAGS) $(LDOUT)$@ common/ptypes2tcl.o

common/ptypes2tcl.o: common/ptypes2tcl.cc common/packet.h

libagentj.so: $(OBJ) common/tclAppInit.o
$(LINK) $(AGENTJ_SHARED_LDFLAGS) -o $@ common/tclAppInit.o $(OBJ) $(LIB)
mv libagentj.so $(AGENTJ_LIB_DIR)

install: force install-ns install-man install-recursive

install-ns: force
$(INSTALL) -m 555 -o bin -g bin ns $(DESTDIR)$(BINDEST)

install-man: force
$(INSTALL) -m 444 -o bin -g bin ns.1 $(DESTDIR)$(MANDEST)/man1

install-recursive: force
for i in $(SUBDIRS); do (cd $$i; $(MAKE) install;) done

clean:
$(RM) $(CLEANFILES)

AUTOCONF_GEN = tcl/lib/ns-autoconf.tcl
distclean: distclean-recursive
$(RM) $(CLEANFILES) Makefile config.cache config.log config.status \

autoconf.h gnuc.h os-proto.h $(AUTOCONF_GEN); \
$(MV) .configure .configure- ;\
echo "Moved .configure to .configure-"

distclean-recursive:
for i in $(SUBDIRS); do (cd $$i; $(MAKE) clean; $(RM) Makefile;) done

tags: force
ctags -wtd *.cc *.h webcache/*.cc webcache/*.h dsdv/*.cc dsdv/*.h \
dsr/*.cc dsr/*.h webcache/*.cc webcache/*.h lib/*.cc lib/*.h \
../Tcl/*.cc ../Tcl/*.h

TAGS: force
etags *.cc *.h webcache/*.cc webcache/*.h dsdv/*.cc dsdv/*.h \
dsr/*.cc dsr/*.h webcache/*.cc webcache/*.h lib/*.cc lib/*.h \

46 CHAPTER 2. INSTALLING THE AGENTJ TOOLKIT

../Tcl/*.cc ../Tcl/*.h

tcl/lib/TAGS: force
(\
cd tcl/lib; \
$(TCLSH) ../../bin/tcl-expand.tcl ns-lib.tcl | grep ’^### tcl-expand.tcl: begin’ | awk ’{print $$5}’ >.tcl_files; \
etags --lang=none -r ’/^[\t]*proc[\t]+\([^ \t]+\)/\1/’ ‘cat .tcl_files‘; \
etags --append --lang=none -r ’/^\([A-Z][^ \t]+\)[\t]+\(instproc\|proc\)[\t]+\([^ \t]+\)[\t]+/\1::\3/’ ‘cat .tcl_files‘; \
)

depend: $(SRC)
$(MKDEP) $(CFLAGS) $(INCLUDES) $(SRC)

srctar:
@cwd=‘pwd‘ ; dir=‘basename $$cwd‘ ; \

name=ns-‘cat VERSION | tr A-Z a-z‘ ; \
tar=ns-src-‘cat VERSION‘.tar.gz ; \
list="" ; \
for i in ‘cat FILES‘ ; do list="$$list $$name/$$i" ; done; \
echo \
"(rm -f $$tar; cd .. ; ln -s $$dir $$name)" ; \
(rm -f $$tar; cd .. ; ln -s $$dir $$name) ; \
echo \
"(cd .. ; tar cfh $$tar [lots of files])" ; \
(cd .. ; tar cfh - $$list) | gzip -c > $$tar ; \
echo \
"rm ../$$name; chmod 444 $$tar" ; \
rm ../$$name; chmod 444 $$tar

force:

test: force
./validate

Create makefile.vc for Win32 development by replacing:
"# !include ..." -> "!include ..."
makefile.vc: Makefile.in
$(PERL) bin/gen-vcmake.pl < Makefile.in > makefile.vc
$(PERL) -pe ’s/^# (\!include)/\!include/o’ < Makefile.in > makefile.vc

2.5.3 What’s included in the Agentj Release?

The Agentjdistribution consists of several co-operating software stacks,
which are described in the following chapters of the manual. It includes
the PAI interface to Protolib (described in Chapt. 4 and the Java NS2 agent
extensions, described in Chapt. ??. Agentjalso has an accompanying pack-
age, called P2PSX, which provides a P2P framework within NS2 [1].

2.6. CONFIGURATION 47

2.6 Configuration

Agentjhas fixed a number of configuration issues for this release. Agentjnow
uses the standard environment variables to configure the location of the
agentj shared library (for JNI) and for the Java classpath required by the
package. There are a couple of points, however:

• JNI Configuration: On my apple Mac, dynamic libraries for
JNI are named specifically for this purpose, using the format
lib<libname>.jnilib. This format is required, otherwise, the Java im-
plementation cannot use the LD LIBRARY PATH environment vari-
able to find the shard library (we use this in this release of Agentj).
However, for ports to other platforms you will have to use the format
required for that platform and include the necessary libraries required
by the JNI interface. This is normally straight forward and informa-
tion can be found in the Java Tutorial [14] for settings for the various
platforms.

• Classpath: The CLASSPATH environment variable is used to ini-
tialise the JVM that is created by Agentj. Therefore, ANY paths
required by your Java application running within NS2 will need to be
specified using this environment variable. Since, we dynamically cre-
ate a JVM from within the C++ code, this is really the only reliable
mechanism for setting the CLASSPATH within the JVM. Normally, one
would tend to specify these on the command line dynamically but this
is not possible with Agentj. Further, if you build your own Agentj ob-
jects, then the classpaths for these will need to be included.

2.7 AgentjLogging

The AGENTJDEBUG environment variable is a course-grained mechanim
which can be used to turn logging on or off. However, if turned on, log4j can
be configured in a number of ways. Agentjuses a simple Java package, called
Autolog, which is used to extend the log4j discovery mechanisms, allowing
the user to specify local log4j configuration files, outside the scope of the
classpath. This is described in more detail in the next two sections.

2.7.1 AutoLog Overview

AutoLog is a simple interface to initialise the Log4j logging system, which
extends the discovery mechanisms for XML configuration files and provides

48 CHAPTER 2. INSTALLING THE AGENTJ TOOLKIT

an auto configuration mode when there is no default configuration chosen by
the user. In short, Autolog always tries to make the best of any particular
environment.

The log4j library does not make any assumptions about its environment.
In particular, there are no default log4j appenders, which results in an Error
like the following:

log4j:WARN No appenders could be found for logger (MyApp).
log4j:WARN Please initialize the log4j system properly.
Process terminated with exit code 0

then, thereafter, no logging message are output. AutoLog tries to configure
the loggin system under these circumstances to use the PatternLayout and
to set the logging to the WARN level. However, it does more than this. The
next section describes the discovery procedure.

2.7.2 AutoLog Discovery

The following procedure takes place:

• Log4J:

The default log4j initialization procedure is attempt. This searches
the CLASSPATH for configuration files which you set using the Java
property “log4j.configuration”. You can set this at the command-line
using something like:

java -Dlog4j.configuration=myfile.xml MyClass

Note that the file you specify MUST be located somewhere within your
CLASSPATH.

• Autolog: The autolog Java property is tried. This allows you to
specify an absolute path/URL to your filename containing your XML
configuration. This property is called “log4j.configuration.file”. You
can set this using something like this:

java -Dlog4j.configuration.file=myfile.xml MyClass

• Default: If the other two fail, then we resort to apply a default ap-
pender to all loggers created within your code, which uses the Pattern
layout using the following format:

%-7p: %l%nMESSAGE: %m (%d)%n%n

2.8. CONCLUSION 49

which results in your logging statement being output in the following
fomat

WARN : examples.SimpleLogging.<init>(SimpleLogging.java:19)
MESSAGE: Here is some WARN (2004-06-30 11:42:27,037)

FATAL : examples.SimpleLogging.<init>(SimpleLogging.java:20)
MESSAGE: Here is some FATAL (2004-06-30 11:42:27,038)

2.7.3 Example XML Configuration

In the autolog config directory, there are a number of example scripts. Here,
we show an example script that gives the same output as the default logging
format described above, for comparison:

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE log4j:configuration SYSTEM "log4j.dtd">

<log4j:configuration xmlns:log4j=’http://jakarta.apache.org/log4j/’>
<appender name="ToTheScreen" class="org.apache.log4j.ConsoleAppender">

<layout class="org.apache.log4j.PatternLayout">
<param name="ConversionPattern"

value="%-7p: %l%nMESSAGE: %m (%d)%n %n"/>
</layout>

</appender>

<category name="A0123456789">
<priority value ="info" />

</category>

<root>
<priority value ="debug" />

<appender-ref ref="ToTheScreen" />
</root>

</log4j:configuration>

2.8 Conclusion

This chapter described the installation of the core packages needed for P2PS-
NS2. The Protolib library needs to be installed first, followed by the P2PS-
NS2 installation. Both installation require the editing of the NS Makefile.in
file in order to add the correct dependencies into NS2. P2PS-NS requires
the installation of both the static and shared libraries for the NS2 executable
and the JNI bindings describes later in this manual.

50 CHAPTER 2. INSTALLING THE AGENTJ TOOLKIT

Part II

Agentj Design and
Implementation

51

53

In this part, we describe the design and implemantation of Agentj. We
describe the underlying toolkit, Protoli and PAI and then describe how
Agentj extends this behaviour into NS2 to provide a generic interface for
simulating Java applications.

54

Chapter 3

Protolib

Protean Protocol Prototyping Library (Protolib) is a low-level communica-
tion, event dispatching and timing package that can be used on top of a
network or within the NS-2 network simulator environment. Protolib is not
so much a library as it is a toolkit. The goal of the Protolib is to provide a
set of simple, cross-platform C++ classes that allow development of network
protocols and applications that can run on different platforms and in net-
work simulation environments. Although Protolib is principally for research
purposes, the code has been constructed to provide robust, and efficient per-
formance and adaptability to real applications.

Currently Protolib supports most Unix platforms (including MacOS X)
and WIN32 platforms. The most recent version also supports building
Protolib-based code for the ns-2 simulation environment. The OPNET simu-
lation tool has also been supported in the past and could be once again with
a small amount of effort.

3.1 An overview of Protolib

A typical usage scenario of Protolib is given in the Fig 3.2 . Here, a timer is
set up to trigger every 100 milliseconds. Upon a trigger event, a C++ call-
back is invoked that allows the application developer to integrate an event
action. In this example, the application sends a UDP message using Protolib.
This communication mechanism can be achieved using a standard UDP call
across a network or between two NS-2 nodes. When the packet is received
by the receiver, another event is generates indicating that data has been re-
ceived. This, in turn, calls a routine that allows the application to collect
the data from the UDP port and process it in some way. The application in-
terface between the Protolib and the P2P middleware abstracts the reliance

55

56 CHAPTER 3. PROTOLIB

ApplicationCommunication

UDP

Protolib

Network NS-2

Timers

Event Dispatcher

TCP* Protocol Timer

Underlying Fabric

Event
Notifications

Figure 3.1: An overview of the Protolib toolkit, showing the three distinct
components, sockets timers and a mechanism for dispatching events.

on specific networking/timing mechanisms in Protolib to create a generalized
pluggable transport mechanism. Within PAI, middleware or indeed applica-
tions program to one interface and then choose the environment they want
to run within e.g. Network or NS-2. This is very similar to GATLite but
at a far lower level. PAI also support multiple sockets, timers and corre-
sponding listeners for timeouts or UDP receive data events and establishes a
cooperating event dispatching mechanism using multithreading.

3.2 Protolib Structure

The following classes are contained within the Protolib toolkit (taken from
the descriptions provide in the release1)

• ProtoAddress: Network address container class with support for
IPv4, IPv6, and ”SIM” address types. Also includes functions for
name/address resolution.

• ProtoSocket: Network socket container class that provides consistent
interface for use of operating system (or simulation environment) trans-

1Given by Brian Adamson, email: adamson@itd.nrl.navy.mil

3.2. PROTOLIB STRUCTURE 57

Protolib

ApplicationEvent Dispatcher

trigger

UDP Receive

Network NS-2

Protolib

Application

UDP Send

100 Millisec Timer

Event Dispatcher

trigger

Callback
Functions

Figure 3.2: An overview of the functionality provided by the ProtoApp ap-
plication, which triggers a data send once-per-second.

port sockets. Provides support for asynchronous notification to Proto-
Socket::Listeners. The ProtoSocket class may be used stand-alone, or
with other classes described below. A ProtoSocket may be instantiated
as either a UDP or TCP socket.

• ProtoTimer: This is a generic timer class which will notify a Proto-
Timer::Listener upon timeout.

• ProtoTimerMgr: This class manages ProtoTimer instances when
they are ”activated”. The ProtoDispatcher (below) derives from this
to manage ProtoTimers for an application. (The ProtoSimAgent base
class contains a ProtoTimerMgr to similarly manage timers for a sim-
ulation instance).

• ProtoTree: Flexible implementation of a Patricia tree data structure.
Includes a ProtoTree::Item which may be derived from or used as a
container for whatever data structures and application may require.

• ProtoRouteTable: Class based on the ProtoTree Patricia tree to
store routing table information. Uses the ProtoAddress class to store
network routing addresses. It’s a pretty dumbed-down routing table at

58 CHAPTER 3. PROTOLIB

the moment, but may be enhanced in the future. Example use of the
ProtoTree.

• ProtoRouteMgr: Base class for providing a conistent interface to
manage operating system (or other) routing engines.

• ProtoDispatcher: This class provides a core around which Unix and
Win32 applications using Protolib can be implemented. It’s ”Run()”
method provides a ”main loop” which uses the ”select()” system call
on Unix and the similar ”MsgWaitForMultipleObjectsEx()” system call
on Win32. It is planned to eventually provide some built-in support
for threading in the future (e.g. the ProtoDispatcher::Run() method
might execute in a thread, dispatching events to a parent thread).

• ProtoApp: Provides a base class for implementing Protolib-based
command-line applications. Note that ”ProtoApp” and ”ProtoSimA-
gent” are designed such that subclasses can be derived from either to
reuse the same code in either a real-world applications or as an ”agent”
(entity) within a network simulation environment (e.g. ns-2, OPNET).
A ”background” command is included for Win32 to launch the app
without a terminal window.

• ProtoSimAgent: Base class for simulation agent derivations. Cur-
rently an ns-2 agent base class is derived from this, but it is possible
that other simulation environments (e.g. OPNET, Qualnet) might be
supported in a similar fashion.

• NsProtoSimAgent: Simulation agent base class for creating ns-2 in-
stantiations of Protolib-based network protocols and applications.

• ProtoExample: Example class which derives either from ProtoApp
or NsProtoSimAgent, depending upon compile-time macro definitions.
It provides equivalent functionality in either the simulation environ-
ment or as a real-world command-line application. It demonstrates
the use/operation of ProtoSocket based UDP transmission/reception,
a ProtoTimer, and an example ProtoSocket-based TCP client-server
exchange. (NOTE: TCP operation is not yet supported in the sim-
ulation environment. This will completed in coming months. I plan
to extend ns-2 TCP agents to support actual transfer of user data to
support this.)

• Other: The Protolib code also includes some simple, general purpose
debugging routines which can output to ”stderr” or optionally log to a
specified file. See ”protoDebug.h” for details.

3.3. CONCLUSION 59

3.3 Conclusion

In this chapter, a brief overview of the Protolib toolkit was given. We gave
an overview of its structure and the types of operations it is designed to
support (e.g. UDP/TCP communication, timers and event dispatching) and
illustrated this through the use of a simple but typical usage scenario. We
then gave an overview of the key classes that make up the toolkit.

Protolib is an evolving toolkit. As PAI has been integrated on top of
Protolib, it has been updated in order to support the functionality required
by Agentj and its applications. PAI, described in the next chapter, focuses
on providing the interfaces necessary for Java applications and middleware
to use Protolib in a number of different contexts.

60 CHAPTER 3. PROTOLIB

Chapter 4

The PAI Interface

The Protolib Application Interface (PAI) provides a layer that allows Protolib
to be used Java applications. Specifically, it provides a generic interface
to timers, sockets and dispatchers and then employs the use of the factory
method design pattern in order to instantiate the required set of objects e.g.
UDP sockets, TCP NS2 sockets, realtime timers, NS2 timers, NS2 event
dispatchers etc.

The resulting PAI interface looks very similar to a Java interface. Where
ever possibly, we have used the Java conventions for interfacing with the
underlying objects. For example, instead of providing callback functions for
a timer, we allow a user to attach multiple listeners to a timer in order to
get notified when an event occurs. The resulting interface therefore is very
simple and very Java friendly.

In this chapter, we give a brief overview of PAI and provide some pro-
gramming examples of its use. We then show how PAI can be used within
NS2 by providing a PAI NS2 agent for integrating with Protolib.

4.1 Overview of PAI

4.2 Programming PAI

4.3 Using PAI within NS2: The C++ Side

The Java PAI interface described in the last Chapter can be used directly
by C++ applications within NS2. This chapters discusses the C++ agent
classes that have been written for Agentjand how these can be used with
PAI to pass data between NB2 nodes and to set off timers.

61

62 CHAPTER 4. THE PAI INTERFACE

Protolib

PAI

PTI (Timing)PCI (Communication)

P2P Middleware

Figure 4.1: An overview of the PAI interface, showing the two sections to
the underlying Protolib sockets and timers.

PAI Engine

PAITimerPAISocket PAIDispatcher

PAI
Factory

UDP
Socket

NS2
UDP

Socket
Timer

NS2
Timer

Event
Disp.

NS2
Event
Disp.

PAI Interface

Application

Calls e.g.
send/receive

Notifications e.g.
Socket Received Data,

Timer time outs

PAI
Environment

Figure 4.2: The PAI interface uses the Factory design pattern to create a
common high level interface to whatever sockets or underlying timers the
programmer is using.

4.4. NS2 AGENTS 63

pai.getEnvironment()->setBinding(PAI_NETWORK);
pai.getEnvironment()->setNetworkProtocol(PAI_UDP);

timer = pti->addTimer(1.0, 5);
sock = pci->addSocket(5004);

pci->addListener(sock, this, (CallbackFunc)&PAI_Example::OnTxTimeout);
pti->addListener(timer, this, (CallbackFunc)&PAI_Example::OnSocketRecv);

pti->runTimers();

void PAI_Example::OnTxTimeout() {
…..
 pci->send(sock1, "127.0.0.1", buffer, len);
}

void PAI_Example::OnSocketRecv() {
 …..
 char *buf = pci->recv(sock1, &addr, &len);
}

Example Main Program:

When Timer times out: When Data is Received:

Figure 4.3: An PAI code example, showing how you would implemented the
standard Protolib demonstration, which sets of a 1 second timer and sends
data between two nodes.

4.4 Ns2 Agents

There are typically two main components within an NS2 scenario:

1. C++ Agent: This is used to represent the C++ behaviour within
Ns2. Examples of agents could include transport protocols e.g. UDP
agent, TCP agent etc. Agents can also be use to implement applications
(using Protolib) or to broker them.

2. TCL Script: This sepcifies which NS2 C++ agents will be used and
also to paint the scenario of the simulation you wish to perform within
the simulation environment.

Figure 4.4 illustrates how these two components interacts within NS2.
The TCL script sets up the environment, e.g., the communication links,
the underlying network core, and specifies which agents are going to be used
within the simulation. An example script is given below, which simply creates
a BasicAgent class and invokes a ’hello’ command on that agent.

set ns_ [new Simulator]

64 CHAPTER 4. THE PAI INTERFACE

C++ OTcl

Pure C++
objects

Pure OTcl
objects

C++/OTcl split
objects

ns2

Agents/communication Simulations/scenarios

Figure 4.4: An overview of how TCL interacts with C++ agents within Ns2

Create two nodes
set n1 [$ns_ node]
set n2 [$ns_ node]

Put a link between them
$ns_ duplex-link $n1 $n2 64kb 100ms DropTail
$ns_ queue-limit $n1 $n2 100
$ns_ duplex-link-op $n1 $n2 queuePos 0.5
$ns_ duplex-link-op $n1 $n2 orient right

set p1 [new Agent/BasicAgent]
$ns_ attach-agent $n1 $p1

puts "Starting simulation ..."

$ns_ at 0.0 "$p2 hello"
$ns_ at 1.0 "finish $ns_"

proc finish {ns_} {
$ns_ halt
delete $ns_
}

$ns_ run

4.4. NS2 AGENTS 65

As you can see from the script, two Ns2 nodes are created and a network
link is specified between them. We then create a custom Agent (called Basic
Agent) and invoke a simple command on that agent. We are interested
here in how such commands get passed to the agents. For specifics and a
compendium of example scripts and agents can be found in the Ns-2 manual
at the web site [12].

TCL scripts communicate with the C++ agents that they create by pass-
ing them commands. These commands get passes to a standardized method
within the C++ Agent, called:

int PAIAgent::command(int argc, const char*const* argv) {

where, conventionally (as in main()), the arguments provide the following
information:

• argc: specifies the number of strings representing the command and
arguments which are being sent (i.e. args 1 contains the command and
2 onwards specifies the arguments for the command).

• argv: These contain the actual strings representing the command and
its arguments.

Therefore, a command, such as:

$ns_ at 0.0 "$p2 hello"

would be caught by the following command method implementation:

int PAIAgent::command(int argc, const char*const* argv) {

if (2 == argc) {
if (!strcmp(argv[1], "hello")) {

cout << "BasicAgent: received a hello! " << endl;
return TCL_OK;
}

// else if ...
}

// invoke the command from the next object up in the Agent class hierarchy

return NsProtoAgent::command(argc, argv);
}

The PAI agents, described in the next section build upon this basic frame-
work and Protolib to allow real applications to be run within the NS2 simu-
lation environment.

66 CHAPTER 4. THE PAI INTERFACE

NsObject

TclObject Handler

Connector

Agent

NsUdpSocketAgen
t

ProtoSimAgent

NsProtoAgent

PAIAgent

NS-2

Protolib

PAIPAI Interface

Protolib & NS2

Figure 4.5: The Class structure of the NS2, Protolib and PAI classes to form
the PAI agent hierarchy within NS2

4.5 PAI Agents and Protolib

4.6 Conclusion

Chapter 5

Agentj : Java Agents in NS2

In this chapter, we present the design and implementation of the
Agentj framework and show the various levels at which Agentj interacts
with other software packages and implements its functionality. In the previ-
ous two chapters, Protolib and the PAI interface were described which form
the building blocks for Agentj. This chapter shows how these have been
integrated through extensive use of the java Java Native Interface (JNI).

The first section provides an overview of the cooperating software com-
ponents and the following section describes the core C++ and Java classes
which have been used to implement these. Then, for completeness, we present
the Java version of the PAI interface, which is at the core of this integration.
Finally, we give a summary this integration by providing a complete overview
of the software component interactions and the corresponding classes which
implement the core behaviour of the system.

Although, the understanding of the details of this chapter is not abso-
lutely necessary for Agentj users, it is highly recommended reading, as the
details given here will give a broad understanding of the Agentj system and
therefore, help a potential user in understanding what s/he can and cannot
do.

5.1 Agentj Software Overview

Using Agentj, each C++ NS2 agent can (optionally) attach a Java agent. A
Java Ns2 agent is a Java program that can be accessed through the standard
Agentj interface, which allows it to receive commands in the same ways as
C++ NS2 agents do. Thus, specifically, an Agentj node is:

A Java object that implements the AgentJObject interface

67

68 CHAPTER 5. AGENTJ: JAVA AGENTS IN NS2

Java
Broker

Protolib

Create JVM

PAI

NS2 Agent

Custom
Java
CodeCustom

Java
Code Custom

Java
Code

Figure 5.1: Agentj can attach any conforming Java object to an NS2 agent.

Agentj nodes can use any 3rd party Java application in order to imple-
ment the behaviour they require. Further Agentj nodes can use the Agentj ’s
PAI binding to access standard communication and timing classes in order
to schedule events and discover and communicate with other Agentj nodes.
In this fashion, complete Java simulations can be built up using these simple
primitives.

For a Java application top become a Agentj node, it only needs to im-
plement a simple Java interface and so the overhead of converting a Java
applications into the Agentj framework is minimal i.e. far easier that writ-
ing an Applet, for integration into another type of environment e.g. a Web
browser. However, for such Agentj nodes to communicate with other nodes,
they will need to interface with Agentj ’s re-implementations of the normal
Java classes they would use. This normally involves replacing all occurances
of java.net. with pai.net.. We used precisely this procedure to integrate the
P2PS middleware, discussed in [1].

In this section, we describe how the Agentj framework has been inte-
grated using JNI and the core C++ Protolib and PAI toolkits and Java
classes.

5.1.1 Creating Agentj Nodes

Figure 5.1 gives an overview of the software architecture employed by
Agentj and shows how Java fits into this picture. Each NS2 agent can
attach a Java object (i.e. Java agent) by accessing a Java Virtual machine
(JVM) and by requesting that an association be made within the Java do-

5.1. AGENTJ SOFTWARE OVERVIEW 69

main between the desired Java object and itself. This request results in
a Java Hashtable being populated with an item pair; with the C++ agent
pointer representing the key and Agentj Java object representing the object.

There could potentially be thousands of NS2 nodes and each one might
want to instantiate and use a Java object. Therefore serious scalability issues
can be encountered if this interaction is not slimline enough. In Agentj, the
C++ JVM helper class (C2JBroker) therefore only allows ONE JVM to be
created no matter how many nodes exist in the simulations. This JVM in-
stantiates a singleton the JavaBroker class, which creates and manages the
external Java objects. JavaBroker contains functionality that can dynam-
ically create a Java object from a textual representation of its name (e.g.
pai.examples.NS2.SimpleCommand).

Once created such objects are added to a local Hashtable, which associates
an NS2 agent’s ID with the associated object that has been created for this
interaction. The NS2 agent’s ID is actually its C++ pointer, which is reused
later within the JNI binding (see below). Therefore, each NS2 node only
instantiates the Java class it needs rather than any other wrapping classes.
This implementation therefore maps one-to-one between the C++ NS2 agent
and its corresponding Java object and therefore keeps the memory allocation
to an absolute minimum; that is, we do not create thousands of JavaBroker
objects, rather, we create one and have this act as a central locator for all
Java objects.

The Java Hashtable is a static Class member (of JavaBroker.java, see
section 5.2) and therefore only one Hashtable exists for all Java agents. When
a node wishes to send a message to its attached Java object, it must first
locate this object by searching this Hashtable using the pointer to the C++
agent. Once it has obtained a reference to the Java agent, it can forward the
command to the object. This searching overhead is necessary for the issues
discussed above in addressing scalability.

5.1.2 Inter-Agentj Communication

Once an Agentj node has been created and attached to its C++ counter-
part, it can then use the supported Agentj communication and timing proto-
cols in order to schedule events and communicate with other Agentj nodes.
Agentj nodes do this by using standard Java interfaces which have been
re-implemented in order to bind to the simulation world within NS2. These
implementations include:

• UDP Transport: DatagramSocket and Multicast Socket have been
rebound to PAI and Protolib to work within NS2.

70 CHAPTER 5. AGENTJ: JAVA AGENTS IN NS2

Java
Broker

Protolib

Create JVM

PAI

Send Agent Ref_

Locate Agent
Using Ref_

NS2 Agent

Protolib
PAI

NS2 Agent

Protolib
PAI

NS2 Agent

NS2 Comms

Custom
Java
CodeCustom

Java
Code Custom

Java
Code

Java PAI
JNI

C++ PAI/Protolib

Figure 5.2: An overview of the Agentj software interaction between NS2,
JNI, PAI and Protolib.

• TCP Transport: under construction....

• Inet Support: a number of the InetAddress methods have been im-
plemented to work within the NS2 context.

• Timing Libraries: simple interfaces to timing functions have been
implemented so that non realtime events (i.e. NS timing events) can
be triggered at specific intervals during the simulation.

This functionality has been implemented by re-implementing the stan-
dard Java interfaces to the networked Java counterparts of these functions.
Therefore, in order to use these within your Java program for example, you
simply need to import the pai.net versions of DatagramSocket and Multicas-
tSocket rather than the java.io versions.

Figure 5.2 gives an overview of the lower layers of this integration and
provides a complete picture of how Agentj uses Java within its implemen-
tation. Here, the Agentj nodes interface through the Java PAI libraries by
using a JNI binding to the C++ PAI and underlying Protolib toolkits. It
is this software stack that describes the full integration. The standard Java
interfaces described above merely provide convenient access to these libraries.

5.2. AGENTJ IMPLEMENTATION 71

Therefore, an Agentj node interacts with other Agentj nodes by binding
the standard Java interfaces to the PAI socket and timing classes within the
JNI implementation, as indicated here. This integration allows Agentj nodes
to issue commands to send data between NS2 nodes and to set up callbacks
for timing events within NS2.

For this implementation, a JNI interface is provided between the Java
PAI interface and the corresponding C++ PAI interface that contains
the necessary underlying functionality. Within this implementation, the
Agentj node’s ID is used along within the JNI binding to the PAI inter-
face in order to re-associate the Java object within its C++ Ns2 agent when
we return back to the C++ context. In effect, what we are doing here is
creating a JVM from C++, then we are using JNI to re-enter C++.

However, when we do this, JNI has no context and therefore we cannot
use static methods to obtain pointers to parts of the NS2 system. Therefore,
we have to transport these pointers manually through the JVM so we can
re-establish our context when we are back in the C++ world. Specifically,
the Agentj node needs to be able to reference its corresponding C++ NS2
agent so it can invoke the calls in the appropriate way. Otherwise, how would
Protolib know which node to send the data from?

5.2 Agentj Implementation

This section gives an overview of the classes used to implement Agentjand
describes the key classes that integrate the various components together.
There are many underlying classes which are not described here but this
section provides a good starting point for those interested in learning more
about the integration.

Agentj is made up of a collection of C++ and Java classes. There are
many more C++ classes than Java as the majority of the implementation is
involved in binding between Protolib and higher level implementations and
Java interfaces. For example, there are many housekeeping classes which
provide lookup tables for mapping between C++ callbacks and Java Listener
interfaces and vice versa.

Here, we provide descriptions for the key glue classes that tie the various
parts of the system together between the C++ Java classes. The underlying
C++ code for PAI and the specifics of these implementations are out of the
scope of this chapter.

72 CHAPTER 5. AGENTJ: JAVA AGENTS IN NS2

C source code for Agentj

Agentj Implementation

Agentj PAI JNI Implementation

PAI Implementation

AgentJ NS2 Agent

C to Java Class (for creating JVM)

AgentJ Bridge (between JNI and PAI)

C++ Implementation of JNI Stubs

JNI Stubs for PAINative.java

Figure 5.3: The C++ Classes within Agentj.

5.2.1 Organization of Agentj Classes

The Agentj directorty tree is organized as if it was a Java application. There-
fore, within this Agentj directory, there is a classes directory (where all
classes live), a lib directory (for JAR files plus shared libraries), a doc direc-
tory (containing this manual) and a src directory (for source files), amongst
others.

The src directory also is organized as if it was a Java application also
(for the Java parts AND the C++ parts). I apologise in advance for this
for those C++ developers who follow different standards but I write C++
programs as if they were Java and organize them as such! I believe however,
that the overall structure is organized sensibly and due the the nature of
this integration it is far easier to maintain a coherency between the Java and
C++ classes.

At the top-level, there is a ’java’ directory and a ’c’ directory. These
two directory structures are illustrated in Figures 5.3 for C++ and 5.4 for
Java. At the next level, both the Java and C source trees are split into
two sub-directories, one containing the classes specific to the implementa-
tion of Agentjand the other to the supporting implementations of PAI, as

5.2. AGENTJ IMPLEMENTATION 73

Agentj

PAI

AgentJ Interfaces

Java source code for Agentj

AgentJ Implementation

PAI Interfaces

PAI Implementation

PAI JNI Implementation

Figure 5.4: The Java Classes within Agentj.

illustrated.
Beyond this, there are subdirectories that correspond to the particular

section of the overall implementation that those classes are involved with.
Therefore, theses directories are organized as if they were Java packages (and
indeed, in Java, they ARE Java packages). Therefore, APIs (or Java inter-
faces to APIs) are always put in a directory called ’api’ and implementations
of such interfaces are always put in directories called ’imp’. Subsequently,
implementations of different interfaces or APIs are inserted into different sub
directories.

These two Figures will be references in the next section, when we discuss
the specifics about the individual classes which are used to implement parts
of the overall system.

5.2.2 Key Agentj Classes

The central class in Agentj, which implements the bridge between the C++
NS2 nodes and Java is Agentj.cpp (found in Agentj/src/c/agentj, see 5.3).
Agentj.cpp inherits from Protolib’s NsProtoAgent, which is a C++ NS2
agent, which can use the Protolib data transport implementation e.g. UDP

74 CHAPTER 5. AGENTJ: JAVA AGENTS IN NS2

C2JBroker.cpp

YourClass.java

JavaBroker.java

implements YourClass.java

YourClass.java

AgentJObject.java

Agentj.cpp

script.tcl

JavaC++/TCL

JavaBasicBroker.java

ONE JVM Instance

Figure 5.5: The C++ and Java classes used to implement the TCL/C++
and Java bridging mechanism.

and TCP, within NS2. Agentj uses the Agentj class to attach a Java Object
to a C++ agent. Thereafter, the Java object itself interfaces through JNI to
PAI, which in turn uses the Protolib to send the actual data packets.

As shown in Figure 5.5, Agentj uses the C2JBroker C++ class to cre-
ate a Java Virtual Machine (JVM) and communicate with the singleton
JavaBroker Java class. C2JBroker simply has these two functions: it creates
a JVM and provides a C++ interface for sending messages to the JavaBro-
ker Java class. However, it also implements some finer grained function-
ality. C2JBroker initializes Agentj ’s environment variables. It parses the
LD LIBRARY PATH and CLASSPATH variables and passes them to the
JVM when it is being created so that the JVM can use the standard initial-
ization procedures. It also, sets up the debugging settings i.e. by checking
the AGENTJDEBUG and AGENTJXMLCONFIG variables (see Chapter
2).

The JavaBroker Java class allows provides a container for the Java objects
that Agentj creates during the lifetime of the simulation. A Java Hashtable is
used to store each Java object along with its identifier, which is the reference
to the NS2 agent that this Java object belongs to. Each NS2 agent can attach
(instantiate) one Java class and therefore there is a one-to-one interaction
between an NS2 agent and its Java object.

5.2. AGENTJ IMPLEMENTATION 75

JavaBroker.java

Protolib

C2JBroker.cpp

PAI

Send Agent Ref_

Locate Agent
Using Ref_

Agentj.cpp

Protolib
PAI

Agentj.cpp

Protolib
PAI

Agentj.cpp

NS2 Comms

Custom
Java
CodeCustom

Java
Code Custom

Java
Code

PAINative.java
JNI

JNIImp.cpp

JNIBridge.cpp

Figure 5.6: The C++ and Java classes shown in the broad overview of
Agentj.

These interactions are shown in detail in Figure 5.5. Briefly, the pro-
grammer attaches the Java class within the TCL script. The JavaAgent
then passes this data via C2JBroker to the JavaBroker Java object. The
JavaBroker instantiates this object on-the-fly from the given class name.
This means that you can attach multiple Java objects of the same type to
every node or you are free to attach different objects to different NS2 nodes,
depending on what you want to implement. For example, you could have
a Java data collector agent talking to a Java data collection manager node
instance. The only stipulation on the Java objects being created is that they
should implement the AgentJObject interface.

Figure 5.6 shows the Agentjarchitecture given in Figure 5.2 but inserts
the various C++ and Java classes which are used to implement each of
the interactions. This clearly illustrates the interaction between the Agentj,
C2JBroker and JavaBroker classes. Notice here that also the purpose of the
JavaBroker is also illustrated; that is, it acts as a container for the multiple
Java objects (Agentj nodes) that Agentj creates.

Also, depicted here, are the classes involved in the Java and JNI imple-
mentation of the PAI interface. The Java PAI interface is outline in the next
subsection and is implemented by the PAINative Java class, which binds
this interface, through JNI to the underlying C++ PAI implementation.

76 CHAPTER 5. AGENTJ: JAVA AGENTS IN NS2

Within this implementation, there are two key C++ classes: JNIImp and
JNIBridge. JNIImp is a direct implementation of the Java native methods
contained within the PAINative Java class, whilst JNIBridge provides a per-
sistent C++ object for storing information about the state of the C++ PAI
interface during this session.

For example, JNIBridge contains the list of Java to C++ mappings of the
various listeners that have been attached to the numerous sockets and timers
which may have been created by the Java application. It also implements
the callbacks to Java, which in turn, result in an event being passed to the
Java classes which have requested to be notified about such events. This is
a somewhat complicated procedure because C++ callbacks to Java have no
context, so they must invoke a static Java method using an identifier notifying
it which socket or timer this event belongs to. From this information, the
Java method can work out which listeners are interested in this event.

5.2.3 The Java PAI interface

The Java PAI implementation consists of two Java interfaces:

• PAIInterface: interfaces to the communication part of the PAI inter-
face (i.e. the sockets).

• PTIInterface: interfaces to the timing part of the PAI interface (i.e.
the timers).

The PAIInterface allows the user to create multiple sockets and allows
multiple socket listeners to be attached to each socket. This functionality is
necessary for Java applications and is illustrated in the P2PS implementation,
described in [1]. The PTIInterface does the same for timers. However, it is
important to note that a user of Agentjdoes not have to use these classes
directly. In fact, a user should not use these classes directly! They should
use the PAI implementations of the UDP, TCP and timing interfaces for the
default Java interfaces to these classes e.g. if you want to create a UDP socket
then you should create a pai.net.DatagramSocket, which behaves exactly the
same as a java.net.DatagramSocket except that it works within NS2. The
interfaces here merely describe the lower level interfaces and mechanisms that
are used to implement the overall structure.

The Java PAI interface is defined using a collection of Java interfaces and
uses the Factory Method Design pattern [23] in order to create the appropri-
ate underlying implementation. This means that other implementations (e.g.
a native Java implementation) could be implemented at a later date. The

5.2. AGENTJ IMPLEMENTATION 77

application developer however, would not notice this code change because
s/he is working with a consistent interface. The JPAI interface can be found
in package pai.api in the Java source tree and is listed below:

public interface PAIInterface extends PTIInterface {
void init();

void addPAISocketListener(DatagramSocket sock, PAISocketListener listener);

void removePAISocketListener(DatagramSocket sock, PAISocketListener listener);

void open(DatagramSocket sock, int port) throws SocketException;

DatagramSocket addSocket(int port) throws SocketException;

void removeSocket(DatagramSocket sock) throws SocketException;

void setReuseAddress(DatagramSocket sock, boolean on) throws SocketException;

void setSendBufferSize(DatagramSocket sock, int size) throws SocketException;

void setReceiveBufferSize(DatagramSocket sock, int size) throws SocketException;

void setSoTimeout(DatagramSocket sock, int timeout) throws SocketException;

void send(DatagramSocket sock, DatagramPacket p) throws IOException;

void receive(DatagramSocket sock, DatagramPacket p) throws IOException;

void close(DatagramSocket sock);

void joinGroup(MulticastSocket sock, InetAddress mcastaddr) throws IOException;

void leaveGroup(MulticastSocket sock, InetAddress mcastaddr) throws IOException;

void setMulticast(MulticastSocket sock, boolean val);

public InetAddress getByName(String host) throws UnknownHostException;

public InetAddress getLocalHost();

public boolean cleanUp();
public boolean runBlock();
public boolean runNonBlock();

public void setNS2Node(String nodeID);

public void setNS2Scheduler(String schedulerID);

78 CHAPTER 5. AGENTJ: JAVA AGENTS IN NS2

}

Most of the calls are self-explanatory. PAI uses the Java conventions for
naming the classes e.g. DatagramSocket and MulticastSocket, both found in
the java.net package (see [14]). The PAI Java implementation reimplements
the methods from these classes in order to use the PAI interface. This enables
the PAI interface to provide the functionality but it leaves the Java interface
that developers are familiar with the same. Therefore, to create a Java UDP
socket, you simply instantiate a DatagramSocket, which in turn invokes PAI
to create a C++ PAI socket, which in turn creates a Protolib socket.

The PTIInterface is much simpler:

public interface PTIInterface {
PAITimer addTimer(double delay, int repeat);

void removeTimer(PAITimer timer);

void addPAITimerListener(PAITimer timerID, PAITimerListener listener);

void removePAITimerListener(PAITimer timerID, PAITimerListener listener);

boolean runTimers();
}

Here, we simply provide a mechanism for creating a simple timer and
allow a Java application to attach multiple listeners to it.

This design carries the whole weight of the Agentj implementation. To
an application, the use of the conventional Java interface for creating UDP
sockets means that they require very little source code modification in or-
der to use this PAI JNI binding here. For example, in order to get P2PS
working (see [1]) with this interface, a new resolver was created for UDP.
This was a direct copy of the Java UDP resolver code with the occurrences
of java.net replaced with pa.net, which enables this new resolver to look in
the appropriateplace for the PAI DatagramSocket class. Everything else fol-
lowed through the various layers and P2PS required no further modification
at the transport level. This re-implementation of these base Java classes can
be found in the pai.net package in the source tree.

5.3 Conclusion

In this chapter, an overview of the Agentj integration was given, from a con-
ceptual perspective and a source-code perspective. We illustrated the design

5.3. CONCLUSION 79

and architecture of Agentj then described in detail the interaction between
the C++ and Java sections of the system. We then delved into the Java and
C++ classes and outlined the key classes that implement this functionality
and further, outlined the directory structure for Agentj for reference. We
then inserted the names of these classes back into the architectural overview
to give a clear picture of the entire system and the key components thereof.
Finally, we gave a brief outline of the Java PAI interface to illustrate the
kind of functionality it provides.

80 CHAPTER 5. AGENTJ: JAVA AGENTS IN NS2

Part III

Using Agentj

81

83

In this part, we describe Agentj from a user’s perspective. A typical
user of Agentj would be a programmer of a Java application who would like
to simulate their distributed application within NS2. In this part therefore,
we describe how this can be achieved and which interfaces need to be im-
plemented in order to build a bridge between NS2 and your distributed Java
application. A comprehensive example of such an integration can be found in
the accompanying manual for P2PSX [1], which integrates a comprehensive
P2P middleware system into NS2 using Agentj.

84

Chapter 6

Using Agentj

Using Agentj, a Java NS2 agent can be attached to an NS2 node and can be
used to integrate any Java application. This chapter gives an overview of the
interaction between the TCL scripts, the C++ NS2 agents and Java objects,
which can be accessed from each NS2 node. The various code snippets are
taken from the Agentj source tree and pointers are referenced relative to
the installation directory, when provided.

Figure 6.1 shows an overview of the interaction between the C++ agents,
the JavaBroker and the Java PAI bridge that enables this to be interfaced
with the C++ PAI library. As discussed briefly in the previous chapter, the
C++ JavaAgent passes the pointer to the C++ agent to the JavaBroker
when it requests to create and attach a Java agent to the NS2 node.

The JavaBroker class uses this pointer to store the created Java object
in a hashtable for lookup but also pass this references across to the JNI
interface, when a Java object requires the use of the PAI interface. This
enables the JNI interface to locate the node that created the Java object and
therefore whom is indirectly issuing the commands, which ensures that the
data being sent through the sockets is sent from the correct node. The PAI
interface sends these commands to the Protolib library, which in turn, uses
the Protolib NS2 UDP implementation to send the data between the NS2
nodes.

6.1 Invoking Java Agents from NS2 Agents

Figure 6.2 shows interaction between an agent and its associated Java class.
The programmer who wishes to use this Java functionality within their NS2
simulations only needs to be concerned within their NS2 TCL script and
their Java class that implements the behaviour. The relationship between

85

86 CHAPTER 6. USING AGENTJ

JNI
Bridge

Protolib

JavaBroker

JPAI

PAI

Send Ref_ Ref_

Locate Agent
Using Ref_

NS2 Agent

Protolib
PAI

NS2 Agent

Protolib
PAI

NS2 Agent

NS2 Comms

Java
Agent
Code

Figure 6.1: An overview PAI is accessed from within a Java node for an NS2
agent

an Ns2 agent and its Java class is very similar to the relationship between
an NS2 TCL script and its associated C++ class (i.e. an NS2 agent) which
implements the same kind of interaction through sending text commands
between the two. The Java interface employs the same mechanism to bridge
these different programming languages. The C++ agent (JavaAgent) simply
acts as a go-between and passes that commands across to the appropriate
Java object.

Therefore, the interface between the NS2 JavaAgent and the chosen Java
Class it will interact with, uses the same command-style interface as the TCL-
C++ interface for invoking functionality on NS2 agents. This command-style
interaction satisfies some essential constraints:

• Flexibility: it will keep the flexibility of being able to use NS2 agents
in any way programmer sees fit - the Java extensions are optional and
any agent extending the JavaAgent can choose to use this functionality.
However, the core C++ agent code can be programmed to incorporate
and other functionality needed beyond the scope of Java.

• Simplicity: the scalability issues and framework for interacting with
the Java objects can easily be hidden behind the container C++ and

6.1. INVOKING JAVA AGENTS FROM NS2 AGENTS 87

JavaAgent
Through

Command()

JVM

myScript.tcl

setJavaClass MyJProg
Public class MyJProg

String command(String command, String[] args) {
 If (command.equals(“discover”)
 ...

Invokes
command()
Method on
Java Class

ONE
JVM

Instance

Object
Container

One Java
instance for
Each Agent

NsProtoAgent

Figure 6.2: The interface to a Java program for an agent employs a similar
interface to that of NS2 when communicating between the TCL scripts and
the C++ classes.

Java classes - the programmer does not need to be aware of their pres-
ence.

• Familiarity: this mechanism allows communication between the NS2
agent and any attached Java class through the same familiar interface as
NS2 programmers interface between the TCL scripts and C++ agents
now.

This interaction is shown in Figure 6.3, which shows some JavaAgent
commans for specifying and attaching a Java object and for sending it com-
mands. These are the minimum commands needed in order to use your Java
object. Each Ns2 node creates a Java object of its own choice by using the
TCL command:

setClass <classpath> <class>

which allows the Java classpath to be set along with the name of the Java
class to be instantiated for this NS2 node. Once the Java object has been
created, commands can be sent by using the TCL command:

javaCommand <command> <args>

88 CHAPTER 6. USING AGENTJ

YourClass.java

implements

CommandInterface.java

script.tcl

JavaTCL

setClass <classpath> <class>

javaCommand <command> <args>

Figure 6.3: The user’s view of the interaction between the NS2 agent/script
and the Java class associated with that NS2 node.

which would invoke the java command with the associated arguments. There
are also other commands implemented that allow you to specify the delimiter
to make it easier to chunk your arguments in a flexible way and for creating
a trigger mechanism. The following 2 sections illustrate these commands
through the use of example TCL and Java codes and the next chapter illus-
trates how you can extend the Java functionality to use PAI in order to send
data between your Java objects through the NS2 subsystem.

6.2 Creating and Attaching a Java Agent

This is a Hello World example that demonstrates how to specify the Java
classpath and choose a Java class to instantiate and attach to your C++
agent. It then implements a simple hello function which is invoke on the
Java object.

6.2.1 The TCL Side

The following is the TCL script part of the implementation, which creates
two JavaAgent NS2 nodes that each create a SimpleCommand Java object

6.2. CREATING AND ATTACHING A JAVA AGENT 89

and then invoke a ’hello’ command on that object. This example can be
found in examples/pai/javaAgent/startJava.tcl.)

puts "Starting..."

Create a simulator instance
set ns_ [new Simulator]

Create two nodes
set n1 [$ns_ node]
set n2 [$ns_ node]

Put a link between them
$ns_ duplex-link $n1 $n2 64kb 100ms DropTail
$ns_ queue-limit $n1 $n2 100
$ns_ duplex-link-op $n1 $n2 queuePos 0.5
$ns_ duplex-link-op $n1 $n2 orient right

puts "Creating JavaAgent NS2 agents and attach them to the nodes..."
set p1 [new Agent/JavaAgent]
$ns_ attach-agent $n1 $p1

set p2 [new Agent/JavaAgent]
$ns_ attach-agent $n2 $p2

puts "CREATED OK"

Initialize each broker telling it what its NS2 address is

puts "In script: Initializing ..."

$ns_ at 0.0 "$p1 initAgent"
$ns_ at 0.0 "$p2 initAgent"

puts "Setting Java Object to use by each agent ..."

$ns_ at 0.0 "$p1 setClass
/Users/scmijt/Apps/nrl/p2ps-ns2/classes pai.examples.ns2.SimpleCommand"

$ns_ at 0.0 "$p2 setClass
/Users/scmijt/Apps/nrl/p2ps-ns2/classes pai.examples.ns2.SimpleCommand"

send a message to each agent and tell it to print it to the screen
This is a "HelloWorld" program for JavaAgents

$ns_ at 0.0 "$p1 javaCommand hello AStringFromP1"
$ns_ at 0.0 "$p2 javaCommand hello AStringFromP2"

90 CHAPTER 6. USING AGENTJ

$ns_ at 10.0 "finish $ns_"

proc finish {ns_} {
$ns_ halt
delete $ns_
}

$ns_ run

The Java agent parts can be seen in this example. The setClass
function sets the classpath to the p2ps-ns2 installations classes directory.
Here, the actual java class that this node will be using is specified as
pai.examples.ns2.SimpleCommand. Note here that you can load in classes
that are contained in any java package that you wish as long as you follow
the Java conventions for locating the compiled versions of these classes.

Once the Java classes have been located, you can then execute various
commands by using the javaCommand instruction. Here we ask the Java
class to execute a hello command and pass a string as an argument, identi-
fying the node that is sending the message i.e. AStringFromP1. This simple
example demonstrates that two Java objects have been created, one for each
node and each Java object has been correctly associated or bound to the
particular NS2 node.

6.2.2 The Java Side

On the java side of things each object you want to talk to must implement
a standard interface called ”CommandInterface” which enforces that every
Java object implementing this interface implements this command method:

package pai.broker;

public interface CommandInterface {

public String command(String command, String value);
}

Every class that you wish to be used from an NS2 agent must implement
this Java interface so that it can understand the instructions that are sent
to it. Below, an example Java class is given to illustrate the code involved
in this process (the actual Java code for this and all other examples

can be found in the src/jpai/pai/examples/ns2 directory):

package pai.examples.ns2;

6.3. CHANGING THE COMMAND DELIMITER 91

import pai.broker.CommandInterface;

public class SimpleCommand implements CommandInterface {

static int count=0;

int myID;

public SimpleCommand() {
++count;
myID=count;

}

public String command(String command, String args[]) {

if (command.equals("hello"))
System.out.println("SimpleCommand(" + myID + ")
called with Val: " + args[0]);

return "All called ok from node " + myID;
}

}

As you can see, this is extremely simple, the C++ and Java JVM class
take care of all the complexity. In the command method, you can implement
any behaviour you want. You can also return a String to your C++ program
as indicited. This could allow you, for example, to discover other NS2 nodes
using P2PS and then return their address to your C++ agent and keep the
control at this point (helpful for non-java programmers!).

6.3 Changing the Command Delimiter

This example demonstrates how you would change the delimiter used to
separate command arguments sent to your Java application. The default
is to use a white space (as in NS2) to automatically parse the arguments
and send them as a sequence of arguments to your agent or Java object.
Within the Java NS2 implementation however, this choice is left up to the
programmer. Therefore, you could specify for example a ’-’ symbol as a
delimeter and a sequence such as this

8 - cherry apple oranges - to eat

would be parsed and sent to you program as 3 strings:

92 CHAPTER 6. USING AGENTJ

8

cherry apple oranges

to eat

This allows more flexibility in the way you send instructions to your Java
code because it does not limit the input to contiguous strings. The example
given below demonstrates how this is achieved from the TCL and Java sides.

6.3.1 The TCL Side

The following is the TCL script part of the implementation, which creates two
JavaAgent NS2 nodes that each create a ChangeDelimiter Java object and
then change the delimiter of one of the nodes in order to split up the input
with respect to a ’-’ symbol. Note that setting delimiters is a global process
and therefore can be set through any node and will be applied to all nodes.
This example can be found in examples/pai/javaAgent/changeDelimiter.tcl)

puts "Starting..."

Create simulator instance
set ns_ [new Simulator]

Create two nodes
set n1 [$ns_ node]
set n2 [$ns_ node]

Put a link between them
$ns_ duplex-link $n1 $n2 64kb 100ms DropTail
$ns_ queue-limit $n1 $n2 100
$ns_ duplex-link-op $n1 $n2 queuePos 0.5
$ns_ duplex-link-op $n1 $n2 orient right

puts "Creating JavaAgent NS2 agents and attach them to the nodes..."
set p1 [new Agent/JavaAgent]
$ns_ attach-agent $n1 $p1

set p2 [new Agent/JavaAgent]
$ns_ attach-agent $n2 $p2

puts "In script: Initializing ..."

$ns_ at 0.0 "$p1 initAgent"
$ns_ at 0.0 "$p2 initAgent"

puts "Setting Java Object to use by each agent ..."

6.3. CHANGING THE COMMAND DELIMITER 93

$ns_ at 0.0 "$p1 setClass
/Users/scmijt/Apps/nrl/p2ps-ns2/classes pai.examples.ns2.ChangeDelimiter"

$ns_ at 0.0 "$p2 setClass
/Users/scmijt/Apps/nrl/p2ps-ns2/classes pai.examples.ns2.ChangeDelimiter"

Delimiters are global and can be set through any node

$ns_ at 0.0 "$p1 javaCommand setDelimiter -"

$ns_ at 0.0 "$p2 javaCommand hello A-String-From-P2"

$ns_ at 10.0 "finish $ns_"

proc finish {ns_} {
$ns_ halt
delete $ns_
}

$ns_ run

The Java classes are located and instantiate as previous. Now, we can
use the javaCommand setDelimiter instruction to change the delimiter. We
set this to ’-’ and then send a single contiguous string to node p2 (A-String-
From-P2) by using the ’hello’ command. Now instead of passing this as a
single string (as you would get in the NS2 C++ binding), you would get 4
separate string send to your program, which can be accessed individually, for
example, as:

A

String

From

P2

6.3.2 The Java Side

On the java side ChangeDelimiter.java implements the ”CommandInterface”
to identify that it can process commands:

package pai.examples.ns2;

import pai.broker.CommandInterface;

public class ChangeDelimiter implements CommandInterface {

static int count=0;

94 CHAPTER 6. USING AGENTJ

int myID;

public ChangeDelimiter() {
++count;
myID=count;

}

public String command(String command, String args[]) {

if (command.equals("hello")) {
System.out.println("Command has "

+ args.length + " arguments");
for (int i=0; i<args.length; ++i) {

System.out.println("Arg[" + i + "] = " + args[i]);
}

}

return "All called ok from node " + myID;
}

}

Here, the ’hello’ command simply processes through the arguments and
prints each to the screen on a separate line. Therefore, running the script
will produce the following output:

In script: Initializing ...
Setting Java Object to use by each agent ...
Classpath is -Djava.class.path=/Users/scmijt/Apps/nrl/p2ps-ns2/classes
command has 4 arguments
Arg[0] = A
Arg[1] = String
Arg[2] = From
Arg[3] = P2

6.4 Conclusion

Then, two different examples were provided that illustrate how one would
attach a Java object to an NS2 node and how one can execute Java commands
on that object. Lastly, an example was given that demonstrates how you can
change the delimiter used to parse the list of arguments you can send to your
Java object. This employs a flexible mechanism that can use any string as

6.4. CONCLUSION 95

a delimiter to send lists or sentences to your Java object without having to
parse further.

96 CHAPTER 6. USING AGENTJ

Chapter 7

Advanced Agentj

7.1 Agentj and PAI

In the last section, we discussed the way Java objects could be attached to
Java agents and invoke from within NS2 simulations. In this chapter, an
overview of how such Java nodes can be used to send packages between NS2
nodes by using the PAI interface, described in Chapt. 4. The Java interface
contains a an interface to PAI through JNI that enables the Java objects to
create sockets, attach listeners to the sockets and trigger events.

7.1.1 Using the Java PAI Interface in Ns2 Java Objects

Each Java objects that has been attached to an NS2 node must implement
the PAIAccessInterface given below, which can be found in the pai.broker
package within the source tree:

package pai.broker;

import pai.api.PAIInterface;

public interface PAIAccessInterface {

public void setPAI(PAIInterface pai);
}

PAIAccessInterface provides a mechanism for the JavaBroker object to
create a PAIInterface object to the JNI PAI implementation and pass this
reference to your Java code. You can then use this reference directly to make
PAI calls just as you would if you were using PAI directly.

97

98 CHAPTER 7. ADVANCED AGENTJ

This mechanism managers the creation and deletion of the PAI JNI im-
plementation and sets variables in the JNI before each invocation so that it
has the correct reference to the object it is dealing with at that moment.
Briefly, the JavaBeker only create one instance of the PAI JNI implemen-
tation. This means that before each call it must set the reference to the
actual NS2 node it is about to issue a command to enabling the interface to
create the appropriate binding to PAI at the lower levels. This design adds a
small overhead to each call but saves a substantial amount of memory since
it efficiently uses one instance of the code rather that one for each node,
which would increase memory consumption greatly (i.e. image if you had
thousands of nodes).

7.2 Example 1: Sending Data From One

Node to Another

This example uses the Java PAICommands class to send data between two
NS2 nodes. The actual Java code specifies which nodes to communicate with.
This simple example demonstrates how Java objects can be attached to an
NS2 nodes and used to create sockets and send data between nodes.

7.2.1 The TCL Side

The following is the TCL script part of the implementation, which creates
two JavaAgent NS2 nodes attaches the PAICommands Java object to them,
initializes them and then sends data from the first node to the second by
setting the NS 2 address of the second node directly from the script, using
the setSendTo command.

Create multicast enabled simulator instance
set ns_ [new Simulator]

Create two nodes
set n1 [$ns_ node]
set n2 [$ns_ node]

Put a link between them
$ns_ duplex-link $n1 $n2 64kb 100ms DropTail
$ns_ queue-limit $n1 $n2 100
$ns_ duplex-link-op $n1 $n2 queuePos 0.5
$ns_ duplex-link-op $n1 $n2 orient right

puts "Creating JavaAgent NS2 agents and attach them to the nodes..."

7.2. EXAMPLE 1: SENDING DATA FROM ONE NODE TO ANOTHER99

set p1 [new Agent/JavaAgent]
$ns_ attach-agent $n1 $p1

set p2 [new Agent/JavaAgent]
$ns_ attach-agent $n2 $p2

puts "In script: Initializing agents ..."

$ns_ at 0.0 "$p1 initAgent"
$ns_ at 0.0 "$p2 initAgent"

puts "Setting Java Object to use by each agent ..."

$ns_ at 0.0 "$p1 setClass
/Users/scmijt/Apps/nrl/p2ps-ns2/classes pai.examples.ns2.PAICommands"
$ns_ at 0.0 "$p2 setClass
/Users/scmijt/Apps/nrl/p2ps-ns2/classes pai.examples.ns2.PAICommands"

puts "Starting simulation ..."

$ns_ at 0.0 "$p1 javaCommand init"
$ns_ at 0.0 "$p2 javaCommand init"

$ns_ at 0.0 "$p1 javaCommand setSendTo [$n2 node-addr]"
$ns_ at 0.0 "$p1 javaCommand start"

$ns_ at 10.0 "finish $ns_"

proc finish {ns_} {
$ns_ halt
delete $ns_
}

$ns_ run

The Java classes are located and instantiate as described in Sect. 6.2.
Now, we can use the javaCommand init instruction to initialize the Java
nodes, set the send to address (the node where the data will be sent to) and
start the node off, which results in it sending the data.

7.2.2 The Java Side

On the java side PAICommands.java implements various instructions to help
send data and to trigger timers etc:

package pai.examples.ns2;

100 CHAPTER 7. ADVANCED AGENTJ

import pai.broker.CommandInterface;
import pai.broker.PAIAccessInterface;
import pai.api.PAIInterface;
import pai.net.DatagramSocket;
import pai.net.DatagramPacket;
import pai.net.InetAddress;
import pai.impl.PAITimer;
import pai.impl.Logging;
import pai.event.PAISocketEvent;
import pai.event.PAISocketListener;
import java.net.SocketException;
import java.io.IOException;

public class PAICommands implements CommandInterface, PAIAccessInterface,
PAISocketListener {

PAIInterface pai;
String sendTo;
DatagramSocket s;
PAITimer t;
int count=0;

public void init() {
try {

s = pai.addSocket(5555);
pai.addPAISocketListener(s,this);

} catch (SocketException e) {
System.out.println("Error opening socket");

}
catch (IOException ep) {

System.out.println("Error opening socket");
}

}

void start() {
timerTriggered(); // transmit first packet right away

}

public void dataReceived(PAISocketEvent sv) {
try {

++count;
byte b[] = new byte[15];
DatagramPacket p = new DatagramPacket(b,b.length);
pai.receive(s, p);
if (Logging.isEnabled()) {

System.out.println("PAICommands: Received" +
" PACKET NUMBER ----------------> " + count);
System.out.println("PAICommands: Received "
+ new String(p.getData()) +

7.2. EXAMPLE 1: SENDING DATA FROM ONE NODE TO ANOTHER101

" from " + p.getAddress().getHostAddress());
}

} catch (IOException ep) {
System.out.println("PAICommands: Error opening socket");

}
}

public void timerTriggered() {
try {

byte b[] = (new String("Hello Proteus " +
String.valueOf(count)).getBytes());
DatagramPacket p =new DatagramPacket(b, b.length,
new InetAddress(sendTo), 5555);
pai.send(s,p);

} catch (IOException eh) {
System.out.println("Error Sending Data");

}
}

public String command(String command, String args[]) {
if (command.equals("init")) {

init();
return "OK";

}
else if (command.equals("setSendTo")) {

sendTo = args[0];
return "OK";

}
else if (command.equals("start")) {

start();
return "OK";

}
else if (command.equals("trigger")) {

timerTriggered();
return "OK";

}
else if (command.equals("cleanUp")) {

pai.cleanUp();
return "OK";

}

return "ERROR";
}

public void setPAI(PAIInterface pai) {
this.pai=pai;

}
}

102 CHAPTER 7. ADVANCED AGENTJ

Firstly, you’ll notice that PAICommands implements three interfaces:

• CommandInterface: so that it understands how to execute com-
mands, as described in the previous chapter.

• PAIAccessInterface: (see pai.broker.PAIAccessInterface) this inter-
face is a tagging mechanism that tells the subsystem that your Java
object wishes to use the JNI interface. Without this, your object can-
not use the efficient memory allocation that the subsystem provides for
managing all Java objects. You could in principle access PAI directly
but you’d have to manage pointers yourselves, which would be tedious.
Using this interface, the JavaBroker notifies you of the instance of the
pai interface by calling the implemented method from this interface,
called setPAI(PAIInterface pai), as illustrated. This allows you to
store the pai reference locally and use it within your Java object.

• PAISocketListener: this allows your class to be notified when data
arrives at a PAISocket. Briefly, within Java, you attach yourself (or
attach others) as a listener on an object and this results in the notifica-
tion of certain events when they arrive. To make the semantics clear,
you have to implement an interface which enables the source object
to notify you when its state changes. This is achieved generally by a
listener interface, which PAISocketListener implements. Java listen-
ers are an implementation of a callback mechanism. Within C++ you
have to point to actual functions, which Java you attach listeners. The
interface looks like this:

package pai.event;

public interface PAISocketListener {
public void dataReceived(PAISocketEvent event);

}

which contains one method, dataReceived that gets invoked when data
arrives at the socket. The dataReceived method passes a PAISocket
event, which contains details about the socket that issued the event
(i.e. you may be a listener to several sockets). Once this event is
received, you can use pai to retrieve the data, using the receive method
- which takes the socket as a parameter and a DatagramPacket, which
is a container to hold the incoming data (this is the standard Java
mechanism for doing this).

7.3. EXAMPLE 2: USING THE TRIGGER MECHANSIM 103

Briefly, the object is initialized by creating a socket on port 5555. We
then add ourselves as a listener for events from this socket. The start method
gets invoked when a start command is received from the NS2 TCL script, this
simply invokes the trigger function, which results in a data packets being sent
to the the sendTo NS2 node. The sendTo variable is set using the setSendTo
TCL command as described previously.

Within the dataReceived method, messages are printing our if logging is
enabled. There is a static class in pai.impl.Logging, which is set globally for
all classes within the JVM to turn on or off comments. If it is enabled then
you get a verbose output - the default is that it is set to on.

7.3 Example 2: Using the Trigger Mechan-

sim

This is a Java example, which implements the ProtoApp scenario, the demon-
stration class for Protolib. Briefly, a trigger is set off once a second to tell
the Java object to send data to another node. When the data is received
by the receiving NS-2 node, another Java method is triggered allowing it to
read the data using the PAISocketListener interface.

The actual trigger mechanism is implemented in C++ but this then trig-
gers a method in the Java object to tell it to read the data. This example also
uses the PAICommands class. When the C++ trigger times out, it sends a
’trigger’ command to the Java object, which results in the timerTriggered()
method being called. This is equivalent functionality to ProtoApp, but in
Java. However, the actual interface to the timer is set within the NS2 TCL
script and not the C++ class, enabling the programmer to change the timer’s
parameters without having to recompile the whole of NS2.

7.3.1 The TCL Side

The following is the TCL script part of the implementation, which creates
two JavaAgent NS2 nodes attaches the PAICommands Java object to them,
initializes them and then sets up the node that will receive the data by
invoking the setSendTo command on the first node - node 0 sends data to
node 1 in this example. We then start a timer by using

$ns_ at 0.0 "$p1 startTimer 1 -1"

which sets off a timer that times out once per second and runs forever (i.e.
-1 flag). The timer is stopped at the end of the simultation. Here is the TCL
script:

104 CHAPTER 7. ADVANCED AGENTJ

Create simulator instance
set ns_ [new Simulator]

Create two nodes
set n1 [$ns_ node]
set n2 [$ns_ node]

Put a link between them
$ns_ duplex-link $n1 $n2 64kb 100ms DropTail
$ns_ queue-limit $n1 $n2 100
$ns_ duplex-link-op $n1 $n2 queuePos 0.5
$ns_ duplex-link-op $n1 $n2 orient right

puts "Creating PAI Broker Agents ..."
Create two Protean example agents and attach to nodes
set p1 [new Agent/JavaAgent]
$ns_ attach-agent $n1 $p1

set p2 [new Agent/JavaAgent]
$ns_ attach-agent $n2 $p2

puts "CREATED OK"

Initialize each broker telling it what its NS2 address is

puts "In script: Initializing ..."

$ns_ at 0.0 "$p1 initAgent"
$ns_ at 0.0 "$p2 initAgent"

$ns_ at 0.0 "$p1 setClass
/Users/scmijt/Apps/nrl/p2ps-ns2/classes pai.examples.ns2.PAICommands"
$ns_ at 0.0 "$p2 setClass
/Users/scmijt/Apps/nrl/p2ps-ns2/classes pai.examples.ns2.PAICommands"

puts "Starting simulation ..."

$ns_ at 0.0 "$p1 javaCommand init"
$ns_ at 0.0 "$p2 javaCommand init"

$ns_ at 0.0 "$p1 javaCommand setSendTo [$n2 node-addr]"

$ns_ at 0.0 "$p1 javaCommand start"

The timer is started within C++ code NOT Java but the
parameters are specified here

$ns_ at 0.0 "$p1 startTimer 1 -1"

7.4. EXAMPLE 3: SENDING DATA USING MULTICAST 105

Stop
$ns_ at 9.0 "$p1 stopTimer"
$ns_ at 9.0 "$p2 stopTimer"

#Clean up objects

$ns_ at 10.0 "$p1 cleanUp"
$ns_ at 10.0 "$p2 cleanUp"

$ns_ at 10.0 "finish $ns_"

proc finish {ns_} {
$ns_ halt
delete $ns_
}

$ns_ run

This example, will run the timer once per second (well, NS2 second any-
way - which is non real-time so in effect one second will be microseconds)
and iterate for 10 iterations as specified by the NS2 time-stepping as shown.

7.4 Example 3: Sending Data Using Multi-

cast

A Java example, which also implements the ProtoApp scenario but this timer
uses a multicast address to send the data between the nodes. The first
node sends the data to the multicast address and the second node listens to
this address and gets notified when something happens. This example uses
the pai.examples.ns2.MulticastTimerDemo Java class to implement the Java
functionality.

7.4.1 The TCL Side

The following is the TCL script part of the implementation, which creates
a muticast enabled NS2 and creates a multicast address for communica-
tion. The multicast address to be used must be specified in NS2 and then
passed to the Java objects so they know which address to use i.e. by using
the setGroupAddress java TCL script command as illustrated below. Two
JavaAgent NS2 nodes are created and attach a MulticastTimerDemo object:

Create multicast enabled simulator instance
set ns_ [new Simulator -multicast on]

106 CHAPTER 7. ADVANCED AGENTJ

$ns_ multicast

Create two nodes
set n1 [$ns_ node]
set n2 [$ns_ node]

Put a link between them
$ns_ duplex-link $n1 $n2 64kb 100ms DropTail
$ns_ queue-limit $n1 $n2 100
$ns_ duplex-link-op $n1 $n2 queuePos 0.5
$ns_ duplex-link-op $n1 $n2 orient right

Configure multicast routing for topology
set mproto DM
set mrthandle [$ns_ mrtproto $mproto {}]
if {$mrthandle != ""} {

$mrthandle set_c_rp [list $n1]
}

5) Allocate a multicast address to use
set group [Node allocaddr]

puts "Creating Java Broker Agents ..."
Create two Protean example agents and attach to nodes
set p1 [new Agent/JavaAgent]
$ns_ attach-agent $n1 $p1

set p2 [new Agent/JavaAgent]
$ns_ attach-agent $n2 $p2

puts "CREATED OK"

Initialize C++ agents

puts "In script: Initializing ..."

$ns_ at 0.0 "$p1 initAgent"
$ns_ at 0.0 "$p2 initAgent"

#set up the class

$ns_ at 0.0 "$p1 setClass
/Users/scmijt/Apps/nrl/p2ps-ns2/classes pai.examples.ns2.MulticastTimerDemo"
$ns_ at 0.0 "$p2 setClass
/Users/scmijt/Apps/nrl/p2ps-ns2/classes pai.examples.ns2.MulticastTimerDemo"

puts "Starting simulation ..."

$ns_ at 0.0 "$p1 javaCommand setGroupAddress $group"

7.4. EXAMPLE 3: SENDING DATA USING MULTICAST 107

$ns_ at 0.0 "$p1 javaCommand init"
$ns_ at 0.0 "$p2 javaCommand init"

$ns_ at 0.0 "$p1 javaCommand start"

The timer is started within C++ code NOT Java but the
parameters are specified here

$ns_ at 0.0 "$p1 startTimer 1 -1"

Stop
$ns_ at 9.0 "$p1 stopTimer"
$ns_ at 9.0 "$p2 stopTimer"

#Clean up objects

$ns_ at 10.0 "$p1 cleanUp"
$ns_ at 10.0 "$p2 cleanUp"

$ns_ at 10.0 "finish $ns_"

proc finish {ns_} {
$ns_ halt
delete $ns_
}

$ns_ run

We then initialize the two JavaAgent NS2 nodes start the first node. This
results in the first node sending a data packet to the chosen Multicast address,
which results in the second node receiving notification of this transfer. The
timer is then kicked off, which repeats this process 10 times

7.4.2 The Java Side

On the java side MulticastTimerDemo.java implements various commands,
rather similar to the PAICommands class, except that it replaces the set-
Sender function with the Multicast address, enabling all nodes to talk to a
central address. This enables nodes to automatically send data to collections
of nodes and it is this process that will enable P2PS to discover the address
of other nodes using its discovery mechanisms. The code looks like this:

package pai.examples.ns2;

import pai.broker.CommandInterface;

108 CHAPTER 7. ADVANCED AGENTJ

import pai.broker.PAIAccessInterface;
import pai.broker.JavaBroker;
import pai.api.PAIInterface;
import pai.net.DatagramSocket;
import pai.net.DatagramPacket;
import pai.net.InetAddress;
import pai.net.MulticastSocket;
import pai.impl.PAITimer;
import pai.impl.Logging;
import pai.event.PAISocketEvent;
import pai.event.PAISocketListener;

import java.net.SocketException;
import java.io.IOException;

/**
* @author Ian Taylor.
* A demo of a NS2 Java Object that
*/
public class MulticastTimerDemo implements CommandInterface, PAIAccessInterface,

PAISocketListener {
PAIInterface pai;
MulticastSocket s;
PAITimer t;
int count=0;

public void init() {

try {
s = new MulticastSocket(5555);
pai.addPAISocketListener(s,this);
pai.joinGroup(s,
new InetAddress(JavaBroker.getMulticastAddress()));

} catch (SocketException e) {
System.out.println("Error opening socket");

}
catch (IOException ep) {

System.out.println("Error opening socket");
}

}

void start() {
timerTriggered(); // transmit first packet right away
}

public void dataReceived(PAISocketEvent sv) {
try {

System.out.println("Receiving ----------------------------");
++count;

7.4. EXAMPLE 3: SENDING DATA USING MULTICAST 109

byte b[] = new byte[15];
DatagramPacket p = new DatagramPacket(b,b.length);
pai.receive(s, p);
if (Logging.isEnabled()) {

System.out.println("PAICommands: Received " +
"PACKET NUMBER ----------------> " + count);

System.out.println("PAICommands: Received "
+ new String(p.getData()) +

" from " + p.getAddress().getHostAddress());
}

} catch (IOException ep) {
System.out.println("PAICommands: Error opening socket");

}
}

public void timerTriggered() {
try {

byte b[] = (new String("Hello Proteus " +
String.valueOf(count)).getBytes());

System.out.println("Address is " +
JavaBroker.getMulticastAddress());

DatagramPacket p =new DatagramPacket(b, b.length,
new InetAddress(JavaBroker.getMulticastAddress()), 5555);

pai.send(s,p);
} catch (IOException eh) {

System.out.println("Error Sending Data");
}

}

public String command(String command, String args[]) {
if (command.equals("init")) {

init();
return "OK";

}
else if (command.equals("start")) {

start();
return "OK";

}
else if (command.equals("trigger")) {

timerTriggered();
return "OK";

}
else if (command.equals("cleanUp")) {

pai.cleanUp();
return "OK";

}
return "ERROR";

}

110 CHAPTER 7. ADVANCED AGENTJ

public void setPAI(PAIInterface pai) {
this.pai=pai;

}
}

The first thing to notice here is that we are not using the PAI Java inter-
face to create our Multicast socket, but we are using the MulticastSocket class.
The MulticastSocket class we are using here is the PAI re-implementation of
the java.io.MulticastSocket class for use with our Java PAI interface. The
actual implementation of MulticastSocket simply calls the PAI interface in
order to create the appropriate socket, that is in this case, it creates a normal
DatagramSocket by using the default constructor and sets Multicast to true
on this socket so that it can join the multicast group address.

The actual multicast group address being used is set from the TCL script,
as described. Java NS2 object gain access to this address by using the:

JavaBroker.getMulticastAddress();

static method call. This enables any Java object within this JVM to gain
access to the default Multicast address that it should use. P2PS uses this
same address also when communicating with other P2PS nodes, as we will
see in Chapt. ??. Here therefore, we join the Multicast group by issuing the
following PAI command:

pai.joinGroup(s, new InetAddress(JavaBroker.getMulticastAddress()));

The rest of the class simply implements the same functionality as the
PAICommands class discuss earlier in this chapter.

7.5 Conclusion

In this chapter, the Java PAI interface was discussed. An overview of the
architecture was given and a brief description of how the classes implement
this functionality. We then outlined three examples, which show how one
would send data between NS2 nodes, how one would use the timing interface
to send repeated calls and how one would use a Multicast address to send
data to any nodes that are listening to this address.

Bibliography

[1] P2PSX: P2PS Experimental for Simulation, see p2psimplified.org.

[2] Touch J (2001) Overlay Networks, Computer Networks, 3 (2-3), 115-
116.

[3] Shirky C (2000), Modern P2P Definition, see
http://www.openp2p.com/pub/a/
p2p/2000/11/24/shirky1-whatisp2p.html

[4] The Protolib toolkit, see http://pf.itd.nrl.navy.mil/projects/protolib/

[5] SAGA Research Group, see https://forge.gridforum.org/projects/saga-
rg/

[6] The GAP Interface, see http://www.gapinterface.org

[7] Grid Applications / Grid Application Programming In-
terfaces Working Group, organised by GRIDSTART, see
http://www.gridstart.org/twg.shtml

[8] Allen G, Davis K, Dolkas K, Doulamis N, Goodale T, Kielmann T,
Merzky A, Nabrzyski J, Pukacki J, Radke T, Russell M, Seidel E, Shalf
J and Taylor I (2003). Enabling Applications on theGrid: A GridLab
Overview JHPCA Special issue on Grid Computing: Infrastructure and
Applications, August 2003.

[9] The Workshop on Grid Applications Programming, July 2004, 19-21,
EPPC, Edinburgh.

[10] Ian Taylor, Matthew Shields, Ian Wang, Omer Rana, Triana Applica-
tions within Grid Computing and Peer to Peer Environments, Journal
of Grid Computing, Volume 1, Issue 2, 2003, Pages 199 - 217.

[11] The Triana Project, see http://www.trianacode.org/

111

112 BIBLIOGRAPHY

[12] The Ns2 Simulator, see http://www.isi.edu/nsnam/ns/

[13] The Java Home Page, see http://java.sun.com/

[14] The Java Tutorial: A practical guide for programmers,
http://java.sun.com/docs/books/tutorial/

[15] Jxta, see http://www.Jxta.org/

[16] The Gridlab Project, see http://www.gridlab.org/

[17] The GridOneD Project, see http://www.gridoned.org/

[18] Langley, A. The Trouble with JXTA, see
http://www.openp2p.com/pub/a/p2p/2001/05/02/jxta trouble.html

[19] The log4j logging system, see http://logging.apache.org/log4j/docs/

[20] P2PS: Peer to Peer Simplified, see http://www.p2psimplified.org/

[21] The Protean Research Group, SRSS project, see
http://cs.itd.nrl.navy.mil/5522/

[22] The Jini web site: http://www.jini.org/

[23] Gamma E et al. Design Patterns: Elements of Reusable Object-
Oriented Software, 1994, publisher Addison-Wesley, ISBN: 0201633612

[24] UDDI Technical White Paper, UDDI.org, September 6, 2000, see web-
site http://www.uddi.org

[25] Web Services Invocation Framework (WSIF), see website
http://ws.apache.org/wsif/

Index

Agentj installation, 16

Applet, 54

GAP, 10
GAP Upperware, 11
GAT, 10, 11

Java, 55
JNI, 12, 55
JVM, 55
JXTA, 12

MANET, 6

NS2, 47, 55
Ns2, 41

P2P Discovery, 10
P2PS, 12, 54
PAI, 54
Protolib, 54
Protolib Installation, 15

SAGA Research Group, 10
SRSS Group, 6

UDDI, 12

WSIF, 12

113

